(3x+2)(3x+2)=18

Simple and best practice solution for (3x+2)(3x+2)=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)(3x+2)=18 equation:


Simplifying
(3x + 2)(3x + 2) = 18

Reorder the terms:
(2 + 3x)(3x + 2) = 18

Reorder the terms:
(2 + 3x)(2 + 3x) = 18

Multiply (2 + 3x) * (2 + 3x)
(2(2 + 3x) + 3x * (2 + 3x)) = 18
((2 * 2 + 3x * 2) + 3x * (2 + 3x)) = 18
((4 + 6x) + 3x * (2 + 3x)) = 18
(4 + 6x + (2 * 3x + 3x * 3x)) = 18
(4 + 6x + (6x + 9x2)) = 18

Combine like terms: 6x + 6x = 12x
(4 + 12x + 9x2) = 18

Solving
4 + 12x + 9x2 = 18

Solving for variable 'x'.

Reorder the terms:
4 + -18 + 12x + 9x2 = 18 + -18

Combine like terms: 4 + -18 = -14
-14 + 12x + 9x2 = 18 + -18

Combine like terms: 18 + -18 = 0
-14 + 12x + 9x2 = 0

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-1.555555556 + 1.333333333x + x2 = 0

Move the constant term to the right:

Add '1.555555556' to each side of the equation.
-1.555555556 + 1.333333333x + 1.555555556 + x2 = 0 + 1.555555556

Reorder the terms:
-1.555555556 + 1.555555556 + 1.333333333x + x2 = 0 + 1.555555556

Combine like terms: -1.555555556 + 1.555555556 = 0.000000000
0.000000000 + 1.333333333x + x2 = 0 + 1.555555556
1.333333333x + x2 = 0 + 1.555555556

Combine like terms: 0 + 1.555555556 = 1.555555556
1.333333333x + x2 = 1.555555556

The x term is 1.333333333x.  Take half its coefficient (0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
1.333333333x + 0.4444444442 + x2 = 1.555555556 + 0.4444444442

Reorder the terms:
0.4444444442 + 1.333333333x + x2 = 1.555555556 + 0.4444444442

Combine like terms: 1.555555556 + 0.4444444442 = 2.0000000002
0.4444444442 + 1.333333333x + x2 = 2.0000000002

Factor a perfect square on the left side:
(x + 0.6666666665)(x + 0.6666666665) = 2.0000000002

Calculate the square root of the right side: 1.414213562

Break this problem into two subproblems by setting 
(x + 0.6666666665) equal to 1.414213562 and -1.414213562.

Subproblem 1

x + 0.6666666665 = 1.414213562 Simplifying x + 0.6666666665 = 1.414213562 Reorder the terms: 0.6666666665 + x = 1.414213562 Solving 0.6666666665 + x = 1.414213562 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = 1.414213562 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = 1.414213562 + -0.6666666665 x = 1.414213562 + -0.6666666665 Combine like terms: 1.414213562 + -0.6666666665 = 0.7475468955 x = 0.7475468955 Simplifying x = 0.7475468955

Subproblem 2

x + 0.6666666665 = -1.414213562 Simplifying x + 0.6666666665 = -1.414213562 Reorder the terms: 0.6666666665 + x = -1.414213562 Solving 0.6666666665 + x = -1.414213562 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = -1.414213562 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = -1.414213562 + -0.6666666665 x = -1.414213562 + -0.6666666665 Combine like terms: -1.414213562 + -0.6666666665 = -2.0808802285 x = -2.0808802285 Simplifying x = -2.0808802285

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.7475468955, -2.0808802285}

See similar equations:

| 2x+21=6x+29 | | 3x+2*3x+2=18 | | 15x^2-7xy-2y^2= | | 12x+6x=6x+24 | | 1/21/3 | | x+3/2=5-x+2/5 | | -2x(-5)= | | 5x^2-35x+50=0 | | w-8.55=2.67 | | 15E-3=0 | | 5(3x+7)=15+35 | | 4(9+x)= | | 5-2x=2+x | | (5x+7)(x-6)= | | 0.2x-0.7x+6=-9 | | 3(n+4)=18 | | (5x+7)(x-6)=0 | | 6-z=-4 | | x+3=-x^2+8x-7 | | 0.9x-0.3x-7=4 | | 4n/17 | | 8-7x=x^2 | | 8z-14-3z+4=0 | | 60-15=7y+10 | | (x^2)+[3(x^2)*ln(x)]=0 | | 8n(4n+3)= | | 16-2q=9+7 | | y+4=2y-5 | | -9353/4+711/5 | | -93515/20+714/20 | | (n+4)*7=49 | | b^2-11b+10=0 |

Equations solver categories