If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+14)x=180
We move all terms to the left:
(3x+14)x-(180)=0
We multiply parentheses
3x^2+14x-180=0
a = 3; b = 14; c = -180;
Δ = b2-4ac
Δ = 142-4·3·(-180)
Δ = 2356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2356}=\sqrt{4*589}=\sqrt{4}*\sqrt{589}=2\sqrt{589}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{589}}{2*3}=\frac{-14-2\sqrt{589}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{589}}{2*3}=\frac{-14+2\sqrt{589}}{6} $
| -8x-14=-14-24x | | 6÷k+8=5 | | 8=9x+27 | | -3(5v-5)=120 | | 8v-12=-3(-6-6v) | | 9+4x+6x=129 | | 2w+13=5w-5 | | 29+7k=8(4+k) | | 8(-4+4k)=-35-5k | | 90-x=-32 | | 14x=9x+15 | | 4(-2n-5)=-4(n-1) | | 10x^2-20x-60=9 | | r+3r+1=5 | | 6-8x+-20=20x+20+-20 | | -12-2x+3=-1+2x | | 2x+6x-20=x+10 | | -140=19-3p | | 20+3y-50+y=180 | | y-5/4=3/10 | | 2(5x+2)=84 | | 92=-4(3n-8) | | -7y+5(y+3)=-3 | | G(x)=3x-1 | | 2(5x+20)=84 | | 3n+5=6n+3 | | -=7y+5(y+3)=-3 | | 4d+12=3d+36 | | -7+4(4K-4)=-3(5-6k) | | j+23=-9 | | 6(3x+5)=24 | | 1=3+n/4 |