If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+1)*x=24
We move all terms to the left:
(3x+1)*x-(24)=0
We multiply parentheses
3x^2+x-24=0
a = 3; b = 1; c = -24;
Δ = b2-4ac
Δ = 12-4·3·(-24)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*3}=\frac{-18}{6} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*3}=\frac{16}{6} =2+2/3 $
| 7w+7=19-3w+61 | | 4x-4=3(x+4) | | 7(n-1)-2(4n-3)=-1 | | 66=3u+9 | | 5p-22=43 | | x2-49=0 | | 1+2.1+0.6x=6.5 | | 8n=42+6n | | 13=x/5-7 | | -21+10x-x^2=0 | | 5(-4q+6=) | | 5^x-1=6 | | Y=90/x | | 7=-5+2v | | 4/19=x/76 | | -4y+5=16 | | 4n+6-2n=2(n+31) | | 4w-5=25 | | 2(5+h=14 | | 0=2^2+2b=b | | 5(4+x)=6x-5 | | -24=-6+3/2a | | 2u+9=8u+2 | | 56=4w+3w | | 3x+7x+1=2(5×+1)+2 | | 2x-9=3(x-3) | | 54=14u-8u | | 6p+2=3 | | u^2-92u+91=0 | | (90t^2+t)^2-92(90t^2+t)+91=0 | | 0.14+0.02(y)=0.09+0.13(y) | | (1+5x10=) |