(3x+1)(2x-1)=1150

Simple and best practice solution for (3x+1)(2x-1)=1150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(2x-1)=1150 equation:



(3x+1)(2x-1)=1150
We move all terms to the left:
(3x+1)(2x-1)-(1150)=0
We multiply parentheses ..
(+6x^2-3x+2x-1)-1150=0
We get rid of parentheses
6x^2-3x+2x-1-1150=0
We add all the numbers together, and all the variables
6x^2-1x-1151=0
a = 6; b = -1; c = -1151;
Δ = b2-4ac
Δ = -12-4·6·(-1151)
Δ = 27625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{27625}=\sqrt{25*1105}=\sqrt{25}*\sqrt{1105}=5\sqrt{1105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-5\sqrt{1105}}{2*6}=\frac{1-5\sqrt{1105}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+5\sqrt{1105}}{2*6}=\frac{1+5\sqrt{1105}}{12} $

See similar equations:

| 10p-35=-5p-50 | | 7(8m+4)-1=363 | | 3=31+7a | | 8.79x=6.54+13.75x+6.48 | | -21n+12n+84-4n=-7 | | 12d+48=12 | | 13-4k=-7 | | -14=-r-2 | | -4=-5+x/7 | | 60x=65x-5 | | 2x+3(4x+9)=27 | | -x+21=-√(x+9) | | 5+–3u=8 | | 8x–11=3x+29. | | n=-0.10-25 | | (10+n)/(-6)=17 | | 2x+50+5x-80=180 | | 12=t/3 | | w+17=-9 | | 37+x=x+74+73 | | x^2-x=450 | | 9x+3;x=-1 | | (q-3)×3=15 | | 6m-5m=18 | | -32÷h=4 | | (2^x)*x-(x^2)=135 | | 2^x*x-(x^2)=135 | | (2^x)*x-^2=135 | | 2^x*x-x^2=135 | | 10x-9x=4 | | 25p^2+4=0 | | 0=3x^+18x+15 |

Equations solver categories