(3x+1)(12x-4)=75

Simple and best practice solution for (3x+1)(12x-4)=75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(12x-4)=75 equation:



(3x+1)(12x-4)=75
We move all terms to the left:
(3x+1)(12x-4)-(75)=0
We multiply parentheses ..
(+36x^2-12x+12x-4)-75=0
We get rid of parentheses
36x^2-12x+12x-4-75=0
We add all the numbers together, and all the variables
36x^2-79=0
a = 36; b = 0; c = -79;
Δ = b2-4ac
Δ = 02-4·36·(-79)
Δ = 11376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11376}=\sqrt{144*79}=\sqrt{144}*\sqrt{79}=12\sqrt{79}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{79}}{2*36}=\frac{0-12\sqrt{79}}{72} =-\frac{12\sqrt{79}}{72} =-\frac{\sqrt{79}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{79}}{2*36}=\frac{0+12\sqrt{79}}{72} =\frac{12\sqrt{79}}{72} =\frac{\sqrt{79}}{6} $

See similar equations:

| +6a= | | 5−–4p=–11 | | 46+113+x=180 | | (3x+21)=(6x-6) | | (-6,1);m=7 | | 35y=37 | | Y=2x+15/x-3 | | 98=7(d+2) | | 12x-17=3x+13 | | -4(8-x)=0.8(x+8) | | 10(w-95)=30 | | -20k-11+2k=18k+-10 | | 78+54+x=180 | | ─18=─3(x–2) | | 9c-1=-82 | | 4n/10+3=6 | | -4(3-x)=0.8(x+9) | | 2(4n-12)3n=6(n1) | | 11+2p=-18 | | |2x–3|=17 | | 159+45+x=180 | | 1.5d+8.25d=3+2.25d | | -160=6x-8(5x+3 | | -6(-4+5n)=-186 | | xx3=6 | | 5(3x+9)-2=15x-2(x5) | | 2x+7-2x+3=120x | | -4x+8=332 | | 26-3x=8-x | | -21+4x+2x=45 | | 5(3x+4)-2x=-3(-2x+11)-1 | | (x)+(4x+10)+(90)=180 |

Equations solver categories