(3x)(1/2x)+90=180

Simple and best practice solution for (3x)(1/2x)+90=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)(1/2x)+90=180 equation:



(3x)(1/2x)+90=180
We move all terms to the left:
(3x)(1/2x)+90-(180)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3x(+1/2x)+90-180=0
We add all the numbers together, and all the variables
3x(+1/2x)-90=0
We multiply parentheses
3x^2-90=0
a = 3; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·3·(-90)
Δ = 1080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1080}=\sqrt{36*30}=\sqrt{36}*\sqrt{30}=6\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{30}}{2*3}=\frac{0-6\sqrt{30}}{6} =-\frac{6\sqrt{30}}{6} =-\sqrt{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{30}}{2*3}=\frac{0+6\sqrt{30}}{6} =\frac{6\sqrt{30}}{6} =\sqrt{30} $

See similar equations:

| -8(-3x-7)=248 | | 2k+62k=5k-3 | | 5b+14=4 | | Y^2=-5x-8 | | 11^x+6=3^x | | 2x+2x3x=32 | | 2x+2^3x=32 | | X^2-3x+73=0 | | 240w+.25=180w+.40 | | 8x^2-140=280 | | 7(7+4p)=-175 | | b=13/2=-5b/3 | | 40-2x=6x12 | | y.6-7=4 | | (-4)(-4)+10(1/10)64=x | | 2(8-3x)=5x+70 | | -3(2x+1)=2(-3x | | 5-(x+-2)=-15 | | 4(2b+8)=96 | | f.5-22=-25 | | 4^x+1+4^4=320 | | -18+18y=9+18y | | 12+34=g+30 | | 350=2x(5x)+2x(3x+7) | | 10a+9=209 | | 6x2+21x=17 | | 4x2+29x+24=0 | | 7+g=11+15 | | 1x+9=2x+0 | | 12p+6=150 | | 8f+6=5f+15 | | g+14=23+11 |

Equations solver categories