(3x)^2+(4x)^2=625

Simple and best practice solution for (3x)^2+(4x)^2=625 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)^2+(4x)^2=625 equation:



(3x)^2+(4x)^2=625
We move all terms to the left:
(3x)^2+(4x)^2-(625)=0
We add all the numbers together, and all the variables
7x^2-625=0
a = 7; b = 0; c = -625;
Δ = b2-4ac
Δ = 02-4·7·(-625)
Δ = 17500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17500}=\sqrt{2500*7}=\sqrt{2500}*\sqrt{7}=50\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{7}}{2*7}=\frac{0-50\sqrt{7}}{14} =-\frac{50\sqrt{7}}{14} =-\frac{25\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{7}}{2*7}=\frac{0+50\sqrt{7}}{14} =\frac{50\sqrt{7}}{14} =\frac{25\sqrt{7}}{7} $

See similar equations:

| 50-4x=48 | | -x/4-2=x=3 | | -16t^2+96t-80=0 | | 10x+3x=5-2x | | 2/9x+9/4=2+3/2x | | (a+7/8)=5 | | 11*x-4=29 | | 5x+(x÷2)=11 | | -190=19x | | 1/3x=9/8 | | 5x+4=(4x-3)+3x4 | | 3x=(5x+4)+(4x-3) | | 4x-3=(5x+4)+3x | | 13x^2-72x-36=0 | | 5x+4=(4x-3)+3x | | (2x-6)(5x+7)= | | -4.3g=25, | | 36+5x-9=54 | | 3(x-7)-2=25x-287 | | 6(2x-6=-7(-2+4) | | 3x+18+5x=18- | | 15x+19=(13x+1)+(x+20) | | 12+10x+31=81 | | 12+10x+81+31=180 | | 15x+19=(13x+1)+(x+1)19 | | x+20=(15x+19)+(13x+1) | | 12+10x+31+81=180 | | 13x+1=(15x+19)+(x+20) | | -2(x-6)-1=8(x+2) | | x/4+4=-6 | | 72+3x/2=4 | | 15x+19=(13x+1)+(x+1) |

Equations solver categories