(3s+1)(s-4)=5(s-1)

Simple and best practice solution for (3s+1)(s-4)=5(s-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3s+1)(s-4)=5(s-1) equation:



(3s+1)(s-4)=5(s-1)
We move all terms to the left:
(3s+1)(s-4)-(5(s-1))=0
We multiply parentheses ..
(+3s^2-12s+s-4)-(5(s-1))=0
We calculate terms in parentheses: -(5(s-1)), so:
5(s-1)
We multiply parentheses
5s-5
Back to the equation:
-(5s-5)
We get rid of parentheses
3s^2-12s+s-5s-4+5=0
We add all the numbers together, and all the variables
3s^2-16s+1=0
a = 3; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·3·1
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{61}}{2*3}=\frac{16-2\sqrt{61}}{6} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{61}}{2*3}=\frac{16+2\sqrt{61}}{6} $

See similar equations:

| 6(x-2)=2x-8 | | 3x-84=4x+16 | | 20x-8=19x+6 | | 4+3y/6y-2=3/8 | | -3×+15=-6x | | 8(×-2)=4(2x-4)-3x | | 7x=3x+56 | | 16=1/4x+7 | | z=5+3 | | 0.3x=-4.8 | | 12x+10=-110 | | 12x+10=-100 | | X²-11x-26=0 | | 3(x-1)+6=24 | | (x+2)/3=11 | | 6.4x+8x=6 | | 6.4x=8x | | 9a^2+9a-28=0 | | (1/4x+7)×3=36 | | x=4/7x+18 | | 3^5x+2=27^3x | | 3/4x=1/3x+5 | | x-11=57 | | -3q2+118.5q-328.5=0 | | 3(u+4)-6u=33 | | 3(u+4)-6=33 | | 2x+9=5x-7 | | 90+3x+4x=180 | | -4=14-12p | | 23=-3w-7 | | 4k^2-10k+8=0 | | -x+30=5x |

Equations solver categories