If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3p + -2q)(4p + 5q) = 0 Multiply (3p + -2q) * (4p + 5q) (3p * (4p + 5q) + -2q * (4p + 5q)) = 0 ((4p * 3p + 5q * 3p) + -2q * (4p + 5q)) = 0 Reorder the terms: ((15pq + 12p2) + -2q * (4p + 5q)) = 0 ((15pq + 12p2) + -2q * (4p + 5q)) = 0 (15pq + 12p2 + (4p * -2q + 5q * -2q)) = 0 (15pq + 12p2 + (-8pq + -10q2)) = 0 Reorder the terms: (15pq + -8pq + 12p2 + -10q2) = 0 Combine like terms: 15pq + -8pq = 7pq (7pq + 12p2 + -10q2) = 0 Solving 7pq + 12p2 + -10q2 = 0 Solving for variable 'p'. Factor a trinomial. (3p + -2q)(4p + 5q) = 0Subproblem 1
Set the factor '(3p + -2q)' equal to zero and attempt to solve: Simplifying 3p + -2q = 0 Solving 3p + -2q = 0 Move all terms containing p to the left, all other terms to the right. Add '2q' to each side of the equation. 3p + -2q + 2q = 0 + 2q Combine like terms: -2q + 2q = 0 3p + 0 = 0 + 2q 3p = 0 + 2q Remove the zero: 3p = 2q Divide each side by '3'. p = 0.6666666667q Simplifying p = 0.6666666667qSubproblem 2
Set the factor '(4p + 5q)' equal to zero and attempt to solve: Simplifying 4p + 5q = 0 Solving 4p + 5q = 0 Move all terms containing p to the left, all other terms to the right. Add '-5q' to each side of the equation. 4p + 5q + -5q = 0 + -5q Combine like terms: 5q + -5q = 0 4p + 0 = 0 + -5q 4p = 0 + -5q Remove the zero: 4p = -5q Divide each side by '4'. p = -1.25q Simplifying p = -1.25qSolution
p = {0.6666666667q, -1.25q}
| 3+5+6*7-8+5=7 | | 0.6t^2+18t= | | 20=-8+x | | 3.3+9.7x=x+44.8 | | 10x(2x+1)=20x^2+10x | | 2x-6=7y | | x(150)=0 | | 140+(x*.2)=x | | 7(8g-5)=5(6g+4)-2(3g+4) | | 4(x-4)-3(4x+1)=x-19 | | 56x-1=12+-3x | | x+(-14)=31 | | -63-(-24)= | | 3+5*2+3=90 | | 20+x+x^2=0 | | -b+12b=-11 | | 4x^2-56x+141=0 | | 6=-2(-c) | | x-35+x+x-46+.5x=360 | | 2.24+(-9.36)= | | 7-4.0t=15+7.6t | | x-35+x+x-46=360 | | 4x^2-48x+141=0 | | .5t^2+25t-40=0 | | 4=-2+26 | | 0.8(x+100)=0.88x-512 | | 2a-3+a=180 | | 20*x-15=105 | | z+k=d | | -1x+-3=17 | | 203y+323=159y+321 | | (3y+5)=(2x+1) |