If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3p)(2p+5)=180
We move all terms to the left:
(3p)(2p+5)-(180)=0
We multiply parentheses
6p^2+15p-180=0
a = 6; b = 15; c = -180;
Δ = b2-4ac
Δ = 152-4·6·(-180)
Δ = 4545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4545}=\sqrt{9*505}=\sqrt{9}*\sqrt{505}=3\sqrt{505}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{505}}{2*6}=\frac{-15-3\sqrt{505}}{12} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{505}}{2*6}=\frac{-15+3\sqrt{505}}{12} $
| 152+x=101 | | x+x+66+77=180 | | 220=w | | (5y)/(2)-(4)/(3)=(7y)/(4)+(3)/(5) | | 152+101=x | | 5^{3x-3}=43 | | 5y2−43=7y4+35 | | 0.6x-5=0.1x+70.6x−5=0.1x+7 | | 1.5x−1=9 | | -12.48=2.6y | | -24=y-3 | | 8-6q=4 | | 5y2+19y–4=0 | | X2-0.0289+0.17x=0 | | 5x+2=20x+4 | | -2(s+5)^2+50=0 | | 3x+18=5×-4 | | (2m+18)^2+(3m)^2=m^2 | | 6c-6=1-(4c-13) | | 2x+49+5x-32=180 | | 7+x=2(3x+3) | | 226=183-u | | 6x+67=69 | | 200m-125m+48750=51000-175m | | 9=1.5h | | 7k+48=6k+30 | | 19=a/20 | | 25=-5k/k=5 | | 40=2(2w-4)+2w | | 15-3h=-4h-7 | | 208=13r | | 3g-17=2g |