If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3X-1)2+(2X+3)2=5(X-2)+(X-1)(5X+2)
We move all terms to the left:
(3X-1)2+(2X+3)2-(5(X-2)+(X-1)(5X+2))=0
We multiply parentheses
6X+4X-(5(X-2)+(X-1)(5X+2))-2+6=0
We multiply parentheses ..
-(5(X-2)+(+5X^2+2X-5X-2))+6X+4X-2+6=0
We calculate terms in parentheses: -(5(X-2)+(+5X^2+2X-5X-2)), so:We add all the numbers together, and all the variables
5(X-2)+(+5X^2+2X-5X-2)
determiningTheFunctionDomain (+5X^2+2X-5X-2)+5(X-2)
We multiply parentheses
(+5X^2+2X-5X-2)+5X-10
We get rid of parentheses
5X^2+2X-5X+5X-2-10
We add all the numbers together, and all the variables
5X^2+2X-12
Back to the equation:
-(5X^2+2X-12)
10X-(5X^2+2X-12)+4=0
We get rid of parentheses
-5X^2+10X-2X+12+4=0
We add all the numbers together, and all the variables
-5X^2+8X+16=0
a = -5; b = 8; c = +16;
Δ = b2-4ac
Δ = 82-4·(-5)·16
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{6}}{2*-5}=\frac{-8-8\sqrt{6}}{-10} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{6}}{2*-5}=\frac{-8+8\sqrt{6}}{-10} $
| 2x/5+5/5=3x/2+1/2+-X/16+8/16 | | 0,5c+0,25=3/4 | | y-6y-39=0 | | m-99=99 | | (x+2)-6=4(2x-50 | | n/5+-62=-68 | | x2-3x+8=26 | | 2|-5x-3|=10x+14 | | (x+2)+4x=28 | | 3x^2+5x=47 | | 52-3y=22 | | 14-14w=-16w | | 7x-3(5+2x)=7 | | 10+4b=1+3b | | (W-5)-5=(2w+5) | | 6(x-7)=3(x-4) | | 4y(7-2)^2=-200 | | -30=5x+1 | | (x+4)=3x+5(x+4) | | 16+9m=31 | | 16f+24=8(2f+) | | 4n^2-196n=0 | | .18y+.08(y+2000)=1720 | | 2k-3÷k-3=4k-3÷2k-3 | | 2/3+3m/8=31/24 | | 2x+15-9=5 | | 2x+5=500 | | ^2-3x+8=26 | | 3(8-b)=6 | | 5p^2+2p+7=5 | | x+3-3x=11 | | 3u-17=10 |