(39/6x-12)+1=12/8x-16

Simple and best practice solution for (39/6x-12)+1=12/8x-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (39/6x-12)+1=12/8x-16 equation:



(39/6x-12)+1=12/8x-16
We move all terms to the left:
(39/6x-12)+1-(12/8x-16)=0
Domain of the equation: 6x-12)!=0
x∈R
Domain of the equation: 8x-16)!=0
x∈R
We get rid of parentheses
39/6x-12/8x-12+16+1=0
We calculate fractions
312x/48x^2+(-72x)/48x^2-12+16+1=0
We add all the numbers together, and all the variables
312x/48x^2+(-72x)/48x^2+5=0
We multiply all the terms by the denominator
312x+(-72x)+5*48x^2=0
Wy multiply elements
240x^2+312x+(-72x)=0
We get rid of parentheses
240x^2+312x-72x=0
We add all the numbers together, and all the variables
240x^2+240x=0
a = 240; b = 240; c = 0;
Δ = b2-4ac
Δ = 2402-4·240·0
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{57600}=240$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-240}{2*240}=\frac{-480}{480} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+240}{2*240}=\frac{0}{480} =0 $

See similar equations:

| 8v=v+84 | | -6+9y=10y | | 10(0.2n-6)=n-0.25(16-8n) | | 28-2b=22 | | x^2+1x+80+88=180 | | -5+5r=7-7r | | -4t=-2t−4 | | -8v=10-10v | | 2x^2+8-1=0 | | -6g=8-8g | | 5x-3x+14=x+6x | | -2-1h=-3h | | 7(4x+10)=-42 | | 5x-3x-14=x+6 | | 2u=u+21 | | -1,5x+1=-11 | | 3|6x-12|+5=59 | | 12g-5g=7 | | 3n(n-7)=15 | | 6d−2/11​=2d−2/13​ | | 5(x+2)-3(x-1)=6 | | 7,9=4x-3,7 | | 31-9a=4(6a-5) | | 6(2+y)=4(3-y)= | | 31-9a=4(6a-5 | | 5y-22=66 | | 3(x-4)=5(2x-1) | | 12=2/3a | | 3(x-4)=5(2x-1 | | 3/8=3/x | | 38=r+23r= | | -3(5x-2)-x-2=−3(5x−2)−x−2=116 |

Equations solver categories