(3/5)x-3=21/4

Simple and best practice solution for (3/5)x-3=21/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)x-3=21/4 equation:



(3/5)x-3=21/4
We move all terms to the left:
(3/5)x-3-(21/4)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/5)x-3-(+21/4)=0
We multiply parentheses
3x^2-3-(+21/4)=0
We get rid of parentheses
3x^2-3-21/4=0
We multiply all the terms by the denominator
3x^2*4-21-3*4=0
We add all the numbers together, and all the variables
3x^2*4-33=0
Wy multiply elements
12x^2-33=0
a = 12; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·12·(-33)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*12}=\frac{0-12\sqrt{11}}{24} =-\frac{12\sqrt{11}}{24} =-\frac{\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*12}=\frac{0+12\sqrt{11}}{24} =\frac{12\sqrt{11}}{24} =\frac{\sqrt{11}}{2} $

See similar equations:

| -5p+-4p=25+2p | | -5(m+92)=30 | | 6(b-81)=96 | | 3(4/3×-5/9)+2x(5/6-11/3)=4x-4 | | 7−x=−5x−1 | | 5(v+2)=70 | | x+19=3(x–2) | | 3(h-76)=21 | | A/g=6 | | 28=7(m-85) | | 4.4q-2.8-5.2q=-1.8q-3.7 | | x−4+x=5–19x | | s/9+49=51 | | x−4+x=5–19 | | p+8/5=5 | | 104=x+11+x+11 | | 120–9x=18 | | 8(n+2)=80 | | 18=b/4+15 | | 3h+5h=-86 | | 8=n+32/6 | | 0.5x+1.5x=2.5x | | 5n2-4n+1=0 | | 4(x-8)(8-x)=576 | | (5+x)(2+x)=0 | | 2(x+7)=3(x−6) | | 40=7+x+2+7+x+2 | | 2x-3=x+87 | | 2x+9=x–1 | | w+12.1=-5.7 | | 40=7+x+2 | | 5x+80=3+96 |

Equations solver categories