(3/5)(n+12.6)=22

Simple and best practice solution for (3/5)(n+12.6)=22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)(n+12.6)=22 equation:



(3/5)(n+12.6)=22
We move all terms to the left:
(3/5)(n+12.6)-(22)=0
Domain of the equation: 5)(n+12.6)!=0
n∈R
We add all the numbers together, and all the variables
(+3/5)(n+12.6)-22=0
We multiply parentheses ..
(+3n^2+3/5*12.6)-22=0
We multiply all the terms by the denominator
(+3n^2+3-22*5*12.6)=0
We get rid of parentheses
3n^2+3-22*5*12.6=0
We add all the numbers together, and all the variables
3n^2-1383=0
a = 3; b = 0; c = -1383;
Δ = b2-4ac
Δ = 02-4·3·(-1383)
Δ = 16596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16596}=\sqrt{36*461}=\sqrt{36}*\sqrt{461}=6\sqrt{461}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{461}}{2*3}=\frac{0-6\sqrt{461}}{6} =-\frac{6\sqrt{461}}{6} =-\sqrt{461} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{461}}{2*3}=\frac{0+6\sqrt{461}}{6} =\frac{6\sqrt{461}}{6} =\sqrt{461} $

See similar equations:

| 9a+20=-6a+8 | | 12x-9-7x=-17+4x+8 | | 1/3+4/5=x | | 6f–15=–45 | | 80÷n-16=4 | | -2-6t=10 | | X+4-3=2x+2 | | (2,5+2,5x)*x=200 | | 100+0.3x=x | | 209+0.3x=x | | 209+0.3=x | | 29-3q=8 | | x=560+.37x | | -5a+8a-7=-7 | | 5x^2+60=75 | | 1,31x=21,2-x | | 0.6y+2=1.4y-14 | | 10x+28/8=6 | | 8(6x+2)=5(2x-5) | | P-1=5p÷3p-8 | | 1/3x-5=1/6+7 | | 23.4-3.7x=1.3x+28.5 | | x+7=27/10 | | x=300+.6x | | (x+5)2=(x+9)×(x+1) | | 6x-(4x+6)=5x-45 | | 5x-8x=48 | | 5a-3a=7 | | x+23x=23 | | 2x^2=x^2+2 | | 1,31x+x=21,2 | | 6x-9=4x-57 |

Equations solver categories