(3/4)x-1+(1/2)x=11

Simple and best practice solution for (3/4)x-1+(1/2)x=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)x-1+(1/2)x=11 equation:



(3/4)x-1+(1/2)x=11
We move all terms to the left:
(3/4)x-1+(1/2)x-(11)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)x+(+1/2)x-1-11=0
We add all the numbers together, and all the variables
(+3/4)x+(+1/2)x-12=0
We multiply parentheses
3x^2+x^2-12=0
We add all the numbers together, and all the variables
4x^2-12=0
a = 4; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·4·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*4}=\frac{0-8\sqrt{3}}{8} =-\frac{8\sqrt{3}}{8} =-\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*4}=\frac{0+8\sqrt{3}}{8} =\frac{8\sqrt{3}}{8} =\sqrt{3} $

See similar equations:

| 2(y-1)=-2(4+y) | | 49(k+47)=31 | | v=4/33.14(6)3 | | -5x18=9x25 | | 9=4x(0.92) | | 1.83=x/0.15-2x | | 9=4x23 | | x+23=18= | | v=4/33.146.53 | | 3(2g+8)=6 | | (2/3*9a)+(2/3*6)=20.2 | | f=9/5-10+32 | | 6g+24=6 | | (2z-9)(7-z)=0 | | X^x=16 | | x/5+14=59 | | 5x-4/5+20=16 | | 0=c^2-9c+20 | | 4(-3-x)=1 | | 5x-71/5+20=16 | | 17=3(g+9)-g | | x^2x+36=0 | | 7(u-9)=-6u+28 | | 4+10y=6 | | H(t)=-16t^2+112.8t+8.5 | | 2w+63=9w | | w=72-8w | | 2(x-13)+26=338-11x-4(2x-12)+144/3+8x | | w=72 | | 3(x+3)-5(x-1)=5 | | z*8=32 | | 2x+7=136x-5=13 |

Equations solver categories