(3/4)x+(5/8)=9/8

Simple and best practice solution for (3/4)x+(5/8)=9/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)x+(5/8)=9/8 equation:



(3/4)x+(5/8)=9/8
We move all terms to the left:
(3/4)x+(5/8)-(9/8)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)x+(+5/8)-(+9/8)=0
We multiply parentheses
3x^2+(+5/8)-(+9/8)=0
We get rid of parentheses
3x^2+5/8-9/8=0
We multiply all the terms by the denominator
3x^2*8+5-9=0
We add all the numbers together, and all the variables
3x^2*8-4=0
Wy multiply elements
24x^2-4=0
a = 24; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·24·(-4)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*24}=\frac{0-8\sqrt{6}}{48} =-\frac{8\sqrt{6}}{48} =-\frac{\sqrt{6}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*24}=\frac{0+8\sqrt{6}}{48} =\frac{8\sqrt{6}}{48} =\frac{\sqrt{6}}{6} $

See similar equations:

| 5x+4-7(x+1)=7x+2 | | 25r×r×r-31r+6=0 | | X-y=45;X+y=85 | | x-2(-x+9=0 | | 2(b+5)=3(4-b | | 30x+40x=100 | | (x/2)-4=9 | | 9w=-5 | | 2/3b+2/5=64/5 | | 15x=80000 | | (500-24)/68=x | | 5u-10=35 | | 145k^2-170k+10=0 | | 2(y+8)=3y-25 | | 7(y+2)=2(y+12 | | 29k^2-34k+10=0 | | 3y+6=7y+2 | | n^2+5n-636=0 | | (2x-5)+(52)=5x-16 | | (4x-8)-2x=-4 | | -45+x÷7=-5 | | (y+7)=2y+11y+21 | | (2x+5)(6x+1)=0 | | 160=20n | | 160=2(10n) | | 6x-(4x+4)=3x-29 | | 3(x+1)=3+3x | | n+4.7=2(12.8) | | 11n=2n+54 | | 9=-4x-19 | | -29+3r=8(8r+4) | | (n^2+n)=240 |

Equations solver categories