(3/4)x+(1/4)x=19

Simple and best practice solution for (3/4)x+(1/4)x=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)x+(1/4)x=19 equation:



(3/4)x+(1/4)x=19
We move all terms to the left:
(3/4)x+(1/4)x-(19)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)x+(+1/4)x-19=0
We multiply parentheses
3x^2+x^2-19=0
We add all the numbers together, and all the variables
4x^2-19=0
a = 4; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·4·(-19)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*4}=\frac{0-4\sqrt{19}}{8} =-\frac{4\sqrt{19}}{8} =-\frac{\sqrt{19}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*4}=\frac{0+4\sqrt{19}}{8} =\frac{4\sqrt{19}}{8} =\frac{\sqrt{19}}{2} $

See similar equations:

| 2=3x5 | | x+4.16=7.48 | | y-7.38=2.58 | | 10c=103 | | u+1.3=9.18 | | 5x^2-25x+10=100 | | 10×+20y=50 | | E=58h | | 96=8(u+2) | | 1=w/3-6 | | -5(-3y+4)=25 | | 5(x-3)-8x+3=9 | | 15=3(b-95) | | y-24=99 | | 3=n-84/4 | | 5(d-63)=85 | | 10+6k=100 | | 4n+11=14 | | 88=w/9+83 | | X+23x=135 | | 5(d+1)=4(d+-2) | | Y=34(0.6)x | | c-79/6=2 | | 2x-1+7+11=180 | | g=3/5 | | 7(z+6)=49 | | 2(2y+-3)=-14 | | 2(2y+3)=-14 | | 2^(2x+2)+8=33(2^x)) | | q+10/7=4 | | 2f-48=26 | | z/3+6=10 |

Equations solver categories