(3/4)t+(7/8)t=39

Simple and best practice solution for (3/4)t+(7/8)t=39 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)t+(7/8)t=39 equation:



(3/4)t+(7/8)t=39
We move all terms to the left:
(3/4)t+(7/8)t-(39)=0
Domain of the equation: 4)t!=0
t!=0/1
t!=0
t∈R
Domain of the equation: 8)t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+3/4)t+(+7/8)t-39=0
We multiply parentheses
3t^2+7t^2-39=0
We add all the numbers together, and all the variables
10t^2-39=0
a = 10; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·10·(-39)
Δ = 1560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1560}=\sqrt{4*390}=\sqrt{4}*\sqrt{390}=2\sqrt{390}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{390}}{2*10}=\frac{0-2\sqrt{390}}{20} =-\frac{2\sqrt{390}}{20} =-\frac{\sqrt{390}}{10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{390}}{2*10}=\frac{0+2\sqrt{390}}{20} =\frac{2\sqrt{390}}{20} =\frac{\sqrt{390}}{10} $

See similar equations:

| 8/5=5x/9 | | 2x-9=2x+15 | | 15x+4=16x | | 3x^2-6x=-10 | | 6.5=3.14(x) | | 3j-9=13 | | 15x+4=6x | | 2y+50+178=180 | | 6.5=3.14x | | -10n+3(8+8n)=-6(n-40 | | 12x-79=x+9 | | -44+-22+w=99 | | 12x-79=79+9 | | y+(12+28)=59 | | 3/4x+7/8x=39 | | x^2+5x=8x+18 | | (x+2/x+3)-x^2=1-(x-1/3-x) | | x+2/x+3-x^2=1-x-1/3-x | | -10n-4=6 | | -4n-9=11 | | -2(t+4.333)=9.5 | | 5x-5=43 | | -7a+2=-68 | | 7w+7=12w-18 | | 20x+108=444 | | 40x+4x^2=156 | | 3x+1+6x-28=180 | | 20x+108=703 | | 2x×3=25 | | 4-x-2=30-6 | | 20x+108=273 | | 107.25+h-58.75=833.5 |

Equations solver categories