(3/4)n=520

Simple and best practice solution for (3/4)n=520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)n=520 equation:



(3/4)n=520
We move all terms to the left:
(3/4)n-(520)=0
Domain of the equation: 4)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+3/4)n-520=0
We multiply parentheses
3n^2-520=0
a = 3; b = 0; c = -520;
Δ = b2-4ac
Δ = 02-4·3·(-520)
Δ = 6240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6240}=\sqrt{16*390}=\sqrt{16}*\sqrt{390}=4\sqrt{390}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{390}}{2*3}=\frac{0-4\sqrt{390}}{6} =-\frac{4\sqrt{390}}{6} =-\frac{2\sqrt{390}}{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{390}}{2*3}=\frac{0+4\sqrt{390}}{6} =\frac{4\sqrt{390}}{6} =\frac{2\sqrt{390}}{3} $

See similar equations:

| 2x^2+3.16228x+5=0 | | 60=5(7x+5) | | (520)n=3/4 | | 23x-10=3x+30 | | 520•n=3/4 | | 3/4*n=520 | | 2m2+8m+5=0 | | 3(9+3v)+-5=5v+34 | | 4x+2=5×-1 | | 3b+4b-2=19 | | x(2x-3)(4+x)(5-6x)=0 | | 5/n=6/24 | | 2x+3x-6=74 | | -3(8+2x)-4x=16 | | 4+x3/2=31 | | B(x)=45.50-0.09x | | (p+36)+(3p-6)+72=180 | | B(x)=45.50-0.09 | | -279-18=-9(9-3j) | | 9b-8=28 | | 6^(x+1)=24 | | 8.5x+10=10x+20 | | -28=-4b | | m÷15=6 | | -3v-7v=30 | | x+54+x+140=180 | | 5.3=1.2x+3.4-8.7 | | 10x+9=9(x+6)+10 | | -67=-4n+1+6n | | 6x+8-2x(7-7)=2(6+1) | | (p+36)+72+(3p-6)=180 | | S54=h |

Equations solver categories