(3/4)(x+2)=2

Simple and best practice solution for (3/4)(x+2)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)(x+2)=2 equation:



(3/4)(x+2)=2
We move all terms to the left:
(3/4)(x+2)-(2)=0
Domain of the equation: 4)(x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)(x+2)-2=0
We multiply parentheses ..
(+3x^2+3/4*2)-2=0
We multiply all the terms by the denominator
(+3x^2+3-2*4*2)=0
We get rid of parentheses
3x^2+3-2*4*2=0
We add all the numbers together, and all the variables
3x^2-13=0
a = 3; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·3·(-13)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*3}=\frac{0-2\sqrt{39}}{6} =-\frac{2\sqrt{39}}{6} =-\frac{\sqrt{39}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*3}=\frac{0+2\sqrt{39}}{6} =\frac{2\sqrt{39}}{6} =\frac{\sqrt{39}}{3} $

See similar equations:

| 5+2.10x=55-0.10x | | 5(6k+2)=190 | | 15x/5=35 | | -18-8u=u | | 2w-10=-2 | | 9x+45=9x+33 | | 5+21=x+8 | | -5r-2+11r=2(3r-1)+3 | | 75n-13=362 | | 3(2x+3)-5=8x+4-2x | | 10.00+6.25x=13.0+5.75x | | 8(y-3)=96 | | 1.2(.2y+1)+3.6y=7.2 | | y+-1/2=3 | | 8-4(v+8)=8 | | 3/5+2x=3x−x+ | | x+4=-26+11 | | Y=3.25g+2.50 | | x-89=-537x= | | 3-2(6a+5)=-79 | | 5y−29=3y+3 | | 37a+21=132 | | -11+41=-5(x+1) | | -6+h/2=5 | | 3(4x+2)=8x–8 | | x+2/3x+4=29 | | x-10=-5-24 | | 10x+13=92 | | -3x+5=2(2x+1) | | 3(x=6) | | 12x-86=12x+80 | | 255=-17r |

Equations solver categories