If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/4)(8a)+(3/4)(12)=23.4
We move all terms to the left:
(3/4)(8a)+(3/4)(12)-(23.4)=0
Domain of the equation: 4)8a!=0We add all the numbers together, and all the variables
a!=0/1
a!=0
a∈R
(+3/4)8a+(+3/4)12-(23.4)=0
We add all the numbers together, and all the variables
(+3/4)8a-23.4+(+3/4)12=0
We multiply parentheses
24a^2-23.4+3/4*12=0
We multiply all the terms by the denominator
24a^2*4*12+3-(23.4)*4*12=0
We add all the numbers together, and all the variables
24a^2*4*12-1120.2=0
Wy multiply elements
1152a^2*1-1120.2=0
Wy multiply elements
1152a^2-1120.2=0
a = 1152; b = 0; c = -1120.2;
Δ = b2-4ac
Δ = 02-4·1152·(-1120.2)
Δ = 5161881.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{5161881.6}}{2*1152}=\frac{0-\sqrt{5161881.6}}{2304} =-\frac{\sqrt{}}{2304} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{5161881.6}}{2*1152}=\frac{0+\sqrt{5161881.6}}{2304} =\frac{\sqrt{}}{2304} $
| 3d+16=-2(5-3d)d | | 3(x+1.46)=2x | | 3=k39 | | 8=5p+4 | | Y=65x+10=-30x+50 | | 5x–2=13. | | -3-8a=125 | | 1z^2+10z+6=0 | | 12x^2-10x+10=8 | | –2(w+2)=–2 | | 7y+15+7y=8 | | 4.6x3.2=14.72 | | 8=p5+4 | | 3-8a=125 | | -64=-2x | | 1/3(6x+-2)+12=20 | | x^2+9x−83=4x+1 | | (3x−5)=6x−4 | | 7+m/5=5 | | 2a^+a=6 | | 1d^2+6d+1=0 | | 2=2y/3 | | 11n+40=3n | | Y=166x-x^2 | | 0.59=3.2(4-n) | | 4(2x-1)=6x+20 | | n+134.5=–2.4 | | 36=-10x-4 | | x+2Z=180 | | 9+v/5=12 | | F(-8)=-5x+3 | | 2x+-6=2x+-4 |