If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/4)(18+s)=31.50
We move all terms to the left:
(3/4)(18+s)-(31.50)=0
Domain of the equation: 4)(18+s)!=0We add all the numbers together, and all the variables
s∈R
(+3/4)(s+18)-(31.5)=0
We add all the numbers together, and all the variables
(+3/4)(s+18)-31.5=0
We multiply parentheses ..
(+3s^2+3/4*18)-31.5=0
We multiply all the terms by the denominator
(+3s^2+3-(31.5)*4*18)=0
We calculate terms in parentheses: +(+3s^2+3-(31.5)*4*18), so:We get rid of parentheses
+3s^2+3-(31.5)*4*18
determiningTheFunctionDomain 3s^2+3-(31.5)*4*18
We add all the numbers together, and all the variables
3s^2-2265
Back to the equation:
+(3s^2-2265)
3s^2-2265=0
a = 3; b = 0; c = -2265;
Δ = b2-4ac
Δ = 02-4·3·(-2265)
Δ = 27180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27180}=\sqrt{36*755}=\sqrt{36}*\sqrt{755}=6\sqrt{755}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{755}}{2*3}=\frac{0-6\sqrt{755}}{6} =-\frac{6\sqrt{755}}{6} =-\sqrt{755} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{755}}{2*3}=\frac{0+6\sqrt{755}}{6} =\frac{6\sqrt{755}}{6} =\sqrt{755} $
| 2x-1=5x-12 | | 335=413-nn= | | x/2.7+2.6=4.8 | | 3x-8-2x-2=-10 | | 2(x+2)=5x–2. | | 3b+8=b+5 | | 1-2x=9-6x | | 6(x+2)+4=3x+34 | | 2x-2+48=6x-8 | | 6x–2x+8=x+5 | | 12x0.25=$40 | | n+14=-24 | | 7x-4=6×+12 | | 13x-3=7° | | 2(4x+1)=3x+8 | | (7-3i)/(3+2i)=0 | | f(-9.71)=3(-9.71)-5 | | Y=6/7(-7/6*(4-y))+4 | | (4x-28)(x+11)= | | $12x$0.25=$40 | | 11x-4x=- | | 2f−14=–2 | | 2v+6v=-2v-8+1-3 | | 335=413=n | | 4x+2(4-2(x+2)=2x-4 | | (6x+42)-(18x-12)=180 | | 3(w-15.6)=11.7 | | 4.8x=10 | | -5h+4=-5h+9 | | 1/2(x+9)=x+4 | | -9x-7=-25 | | s+20/7=5 |