(3/2x+20)+20x=90

Simple and best practice solution for (3/2x+20)+20x=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2x+20)+20x=90 equation:



(3/2x+20)+20x=90
We move all terms to the left:
(3/2x+20)+20x-(90)=0
Domain of the equation: 2x+20)!=0
x∈R
We add all the numbers together, and all the variables
20x+(3/2x+20)-90=0
We get rid of parentheses
20x+3/2x+20-90=0
We multiply all the terms by the denominator
20x*2x+20*2x-90*2x+3=0
Wy multiply elements
40x^2+40x-180x+3=0
We add all the numbers together, and all the variables
40x^2-140x+3=0
a = 40; b = -140; c = +3;
Δ = b2-4ac
Δ = -1402-4·40·3
Δ = 19120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19120}=\sqrt{16*1195}=\sqrt{16}*\sqrt{1195}=4\sqrt{1195}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-4\sqrt{1195}}{2*40}=\frac{140-4\sqrt{1195}}{80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+4\sqrt{1195}}{2*40}=\frac{140+4\sqrt{1195}}{80} $

See similar equations:

| 6n+3=14(n-1) | | 7^3x+5=7^1−x. | | 28=3f+10 | | 65=7u+2 | | -2.5=5a-10 | | 993=10h-7 | | 40=3b+10 | | 10t+5=25 | | 4k-1=27 | | 1/6x+1/3x=12 | | -2(x-3)^2+4=0 | | 4x+2x+4+2=4x+7x+x | | 17y-7=44 | | p/4+1=3 | | 8p+2,8=39,6 | | 10t-6=24 | | 10q-10=10 | | a²+3a+4=0 | | 2x2-2x+4=0 | | 4p+2=27 | | 3y+13=33 | | 2(2+p)+4=5-3(p-1) | | 4(x+5)-7(6+x)=0 | | 3(4c-7)=3c | | 15x+13-6x=19x | | 5x-24=3x+48 | | x^2+(−1)x+3=0 | | (5x)-x=19 | | x^2+(−1)x+3=0. | | 8x–4=3x+11 | | x^2+4x+3=0. | | 2x3-6=3-3 |

Equations solver categories