(3/2x)-(2/3x)=2

Simple and best practice solution for (3/2x)-(2/3x)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2x)-(2/3x)=2 equation:



(3/2x)-(2/3x)=2
We move all terms to the left:
(3/2x)-(2/3x)-(2)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/2x)-(+2/3x)-2=0
We get rid of parentheses
3/2x-2/3x-2=0
We calculate fractions
9x/6x^2+(-4x)/6x^2-2=0
We multiply all the terms by the denominator
9x+(-4x)-2*6x^2=0
Wy multiply elements
-12x^2+9x+(-4x)=0
We get rid of parentheses
-12x^2+9x-4x=0
We add all the numbers together, and all the variables
-12x^2+5x=0
a = -12; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-12)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-12}=\frac{-10}{-24} =5/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-12}=\frac{0}{-24} =0 $

See similar equations:

| (1/2x)+2=1 | | 4m-2(3+2m)+m(4+1m)=0 | | -17+9=-2(x+5) | | 4x^2+23x=-15 | | 11+24=-5(9x-7) | | 1/3x+1/2=-2(4/5x+4) | | -4(3x-2)=-52 | | 5(2x+7)=-48+3 | | 3/5f+24=4-(-1/5) | | 2h+25=7h | | -3(x+6)-5=-23 | | 1.5^2+2.5^2=x^2 | | 7x/8=95 | | 11x-10=-6x-55 | | 4x-5+6x=11 | | (n)=5n+8 | | 15c-12=8c+ | | 10-3r=-4r-16 | | 7e=2e+9 | | 9x+63=54 | | 35/3y-5=7/8 | | -5x+5=95 | | -7r-5=23 | | 9w+5=8 | | -7n+10=-32 | | -3(x-5)+-2x=40 | | 5x-8-1=16 | | -4+4n=-56 | | -6(3+x)+4(x-6)=-15 | | -8b-8=72 | | 9=c/9+7 | | -(2x+1)=x+8 |

Equations solver categories