(3/2p)-14=p+13

Simple and best practice solution for (3/2p)-14=p+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2p)-14=p+13 equation:



(3/2p)-14=p+13
We move all terms to the left:
(3/2p)-14-(p+13)=0
Domain of the equation: 2p)!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
(+3/2p)-(p+13)-14=0
We get rid of parentheses
3/2p-p-13-14=0
We multiply all the terms by the denominator
-p*2p-13*2p-14*2p+3=0
Wy multiply elements
-2p^2-26p-28p+3=0
We add all the numbers together, and all the variables
-2p^2-54p+3=0
a = -2; b = -54; c = +3;
Δ = b2-4ac
Δ = -542-4·(-2)·3
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-14\sqrt{15}}{2*-2}=\frac{54-14\sqrt{15}}{-4} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+14\sqrt{15}}{2*-2}=\frac{54+14\sqrt{15}}{-4} $

See similar equations:

| 2x-56=33 | | -5.4x+11.6=54.8 | | 2(x+5)=30/5 | | x-12=3x+16 | | 80+(4x+4)=(10+6) | | 33+x=114 | | 55+x=120 | | 6x+2+57+85=180 | | 3.700.000.000/4.600.000.000=x/19 | | 11/13+m=24/13 | | 11.5=x-(-5.7) | | n-(-16)=99/4 | | -225/44=-5/8v | | -32=-15+k | | -7x-6x=4 | | x+x=1/6x=13 | | -9+9x=180 | | 6x-3=1/3(21x+18) | | 4x+5x-6x+7x-8x+9x-10x=50 | | 10x+8-9x=2x+4-5x | | 2(3x-1)+9=6x+7 | | 3x+5=2(4x-3)-5x | | 3(8n-11)=6(4n-5)-3 | | 2x+8-3x=38 | | 2x-3(4x-1)=-7 | | x^2+0.9x+0.8=0 | | 3=n45 | | 3x+2/6=-10/15 | | -5(x+3)-15=11+4 | | 2(x-6)=-4+2(-4+x) | | 13-4x=2(2x-8) | | 15-x=5(x+4) |

Equations solver categories