(3/2)k=5

Simple and best practice solution for (3/2)k=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)k=5 equation:



(3/2)k=5
We move all terms to the left:
(3/2)k-(5)=0
Domain of the equation: 2)k!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
(+3/2)k-5=0
We multiply parentheses
3k^2-5=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $

See similar equations:

| 3^12x2^x=9^4x6^4 | | v+17=33 | | 11x+12=12x+2 | | 4b-1=5b-5 | | A=(3x-8)×(4x) | | 2m2+5m-3=0 | | -4n+6=4n-14-3n | | 30+5(2x-10)=5(x+20) | | /−15+3x=7. | | 30+5(2x-10)=5(x+20 | | -4s+-16s=20 | | -3b-7b=-20 | | K-9=9-k | | 12/x=6/8 | | 2x-9=45-7x | | 30+5(2x-10)=5x+20 | | -6k+8k=-2 | | 3a+8=5a+2 | | 3+-2y=-13 | | 81^x=(1/27) | | 4x+3+2x-5=10 | | 2h+5=3h+2 | | -6z-13=7z | | 8x+6=8x-12 | | 50p+0.55=100 | | 112+-12x=40 | | 0.55p+50=100 | | 20+3x6=Y | | 6+1/5x=11 | | 10-5y=10−5y= | | X+36/y=56 | | 1/5(y)=100 |

Equations solver categories