(3/2)b+6+(1/2)b=15+2b

Simple and best practice solution for (3/2)b+6+(1/2)b=15+2b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)b+6+(1/2)b=15+2b equation:



(3/2)b+6+(1/2)b=15+2b
We move all terms to the left:
(3/2)b+6+(1/2)b-(15+2b)=0
Domain of the equation: 2)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+3/2)b+(+1/2)b-(2b+15)+6=0
We multiply parentheses
3b^2+b^2-(2b+15)+6=0
We get rid of parentheses
3b^2+b^2-2b-15+6=0
We add all the numbers together, and all the variables
4b^2-2b-9=0
a = 4; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·4·(-9)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{37}}{2*4}=\frac{2-2\sqrt{37}}{8} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{37}}{2*4}=\frac{2+2\sqrt{37}}{8} $

See similar equations:

| 5(6-3x)=-4(5+6x) | | -15+r=22 | | 8n-(3n+4)=2 | | 3/v-4=2 | | 27=1/3t-10 | | 6(2c-4)+3-7c=-41 | | 0,4(a+2)=2 | | 10-6=4d-15-3d | | 6x=-22-8(-6x-8) | | 81^(2x-1)=1/9^(2x-13) | | 2n+20=n | | -924=14(8n+14) | | 2+3.50d=5+3.25d | | -38+8x=9x+13 | | 15=7x-(3x-2) | | 3/4(12c-4)15c=17 | | 21/2=13+(-3/8)(3x+(-7)) | | 13z/8-4=5 | | 9m+4m−5m−7m+2m=6 | | 11x/12=x/8+19 | | 4x+5x-4=32 | | 4(-1+2x)=3(3x-4) | | 3y2+14y+15=0 | | -11b+8(12-2b)=420 | | 15²=x²+12² | | 8b−7b=10 | | 2u-u=8 | | m+13=3m-1 | | 256=16(b)^6 | | 7k+k=8 | | 4x+8=7.2+15x | | -71=7(3-6r)+8(r-3) |

Equations solver categories