If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/2)(3x-2)-10x-3=0
Domain of the equation: 2)(3x-2)!=0We add all the numbers together, and all the variables
x∈R
(+3/2)(3x-2)-10x-3=0
We add all the numbers together, and all the variables
-10x+(+3/2)(3x-2)-3=0
We multiply parentheses ..
(+9x^2+3/2*-2)-10x-3=0
We multiply all the terms by the denominator
(+9x^2+3-10x*2*-2)-3*2*-2)=0
We add all the numbers together, and all the variables
(+9x^2+3-10x*2*-2)=0
We get rid of parentheses
9x^2-10x*2*+3-2=0
We add all the numbers together, and all the variables
9x^2-10x*2*+1=0
Wy multiply elements
9x^2-20x^2+1=0
We add all the numbers together, and all the variables
-11x^2+1=0
a = -11; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-11)·1
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*-11}=\frac{0-2\sqrt{11}}{-22} =-\frac{2\sqrt{11}}{-22} =-\frac{\sqrt{11}}{-11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*-11}=\frac{0+2\sqrt{11}}{-22} =\frac{2\sqrt{11}}{-22} =\frac{\sqrt{11}}{-11} $
| x^2=129.5 | | 2/7+2y=-5 | | 3x+8=9x-1 | | 3/2(3x-2)-10x-3=0 | | x=-16/24 | | 4+7(x-5)=4-6(x-9) | | 22x+20=4x-3 | | 19x^1/3=40 | | 19x^(1/3)=40 | | 4=6B+16c | | 11=22-q | | 6(a+3)=6(-2a+2) | | x=-16/4 | | 10x+4=4x-3 | | 1.5(r+2)+1.5r=15 | | 5t^2-12t-30=0 | | -5(x+4)+5=-7(x-4) | | -102=-3k+24-18k | | -6/7x=7 | | 6x+48=6x-2 | | 5/15k-3/15k=31/15k | | 7+3x12x=3x+1 | | 2x+14=14+3.5x | | x5+x-10=0 | | 3x+12/4+x+17/5=14 | | |3x-4|=3x-5| | | X—2y=16 | | x^2=203 | | y4+8y2+36=0 | | Y=-50x+3500 | | 6k+(3×10-8)=(2.3)k+22 | | 14=0.5x+10 |