(3/10)x-4+(6/5)=(3/5)

Simple and best practice solution for (3/10)x-4+(6/5)=(3/5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/10)x-4+(6/5)=(3/5) equation:



(3/10)x-4+(6/5)=(3/5)
We move all terms to the left:
(3/10)x-4+(6/5)-((3/5))=0
Domain of the equation: 10)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/10)x-4+(+6/5)-((+3/5))=0
We multiply parentheses
3x^2-4+(+6/5)-((+3/5))=0
We get rid of parentheses
3x^2-4+6/5-((+3/5))=0
We calculate fractions
3x^2-4=0
a = 3; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·3·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*3}=\frac{0-4\sqrt{3}}{6} =-\frac{4\sqrt{3}}{6} =-\frac{2\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*3}=\frac{0+4\sqrt{3}}{6} =\frac{4\sqrt{3}}{6} =\frac{2\sqrt{3}}{3} $

See similar equations:

| (5x+4)=(3x-22) | | (6v-1)(v-)=0 | | 3y-12+7=2 | | 8x+3x-5x-4x+8x=13 | | 5a/8-3/8=a/2+7/8 | | (310-124)x2=372 | | 3x+72x=0 | | 2w+3=(-3) | | 19.7-0.05t=7 | | 2.4n-7.4=2.4 | | 13÷7-6x=26 | | 7n-21=4n=6 | | -4|2c|=-24 | | 6z—7=2z-2 | | 19.7-0.5t=7 | | F(x)=-2x^2+5 | | -4(8+2v)=-88 | | x+4x+12=2 | | 7n-27=4n+6 | | 3.1=11a-24 | | 2x2+-5=-7 | | (13b-2)-4(3b+4)=-4 | | 6.5/x=1.9 | | -4.5(w+4)=6w-75 | | 7(-2+5n)=-294 | | 0=20+10t-4.9t^2 | | 4/5x+3=2/3 | | 4(3x+5)=12x-9 | | 3x-8=8x+4÷2 | | 4d+1-5d=3-d-2 | | 6x+4+3/2x+67=180 | | 14=6n+4(n-4) |

Equations solver categories