(3/(4x))+(1/(2x^2))=(1/(8x))

Simple and best practice solution for (3/(4x))+(1/(2x^2))=(1/(8x)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/(4x))+(1/(2x^2))=(1/(8x)) equation:


D( x )

8*x = 0

4*x = 0

2*x^2 = 0

8*x = 0

8*x = 0

8*x = 0 // : 8

x = 0

4*x = 0

4*x = 0

4*x = 0 // : 4

x = 0

2*x^2 = 0

2*x^2 = 0

2*x^2 = 0 // : 2

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

3/(4*x)+1/(2*x^2) = 1/(8*x) // - 1/(8*x)

3/(4*x)-(1/(8*x))+1/(2*x^2) = 0

3/(4*x)+(-1/8)*x^-1+1/(2*x^2) = 0

5/8*x^-1+1/2*x^-2 = 0

t_1 = x^-1

1/2*t_1^2+5/8*t_1^1 = 0

1/2*t_1^2+5/8*t_1 = 0

DELTA = (5/8)^2-(0*1/2*4)

DELTA = 25/64

DELTA > 0

t_1 = ((25/64)^(1/2)-5/8)/(1/2*2) or t_1 = (-(25/64)^(1/2)-5/8)/(1/2*2)

t_1 = 0 or t_1 = -5/4

t_1 = -5/4

x^-1+5/4 = 0

1*x^-1 = -5/4 // : 1

x^-1 = -5/4

-1 < 0

1/(x^1) = -5/4 // * x^1

1 = -5/4*x^1 // : -5/4

-4/5 = x^1

x = -4/5

t_1 = 0

x^-1+0 = 0

x^-1 = 0

1*x^-1 = 0 // : 1

x^-1 = 0

x naleu017Cy do O

x = -4/5

See similar equations:

| 3x-5=5(x-5) | | -9x+6x+20-8x= | | 6v-1/2=-7/6v-1/3 | | 4x+21=-1 | | 5/2.5 | | 20x-3x+1560x=6000-40-90 | | 90xt=30600 | | 20x-3x+15690x=6000-40-90 | | 2833+x=7133 | | 30xn=1500 | | 18xt=2466 | | 408+t=932 | | ((36u^6)-(16u^5))/(4u^2) | | 2-2+7+6= | | 2-2+4-6= | | 11xw=286 | | (9u^4)-(4u^3)= | | 13xZ=273 | | z+84=153 | | p(x)=x+5 | | 3+2a=4a-5 | | t+204=957 | | 5/k=4/7 | | 3xX=1110 | | 300-6k=48 | | 6xt=2646 | | 4*b+56=78 | | 2x+3=x-12 | | 2-3x=3+2x | | 5q+6=2q-2+9 | | 12-3x=-6x | | 0=0.03x^2+x |

Equations solver categories