(3-5j)(2-6j)=2+4j

Simple and best practice solution for (3-5j)(2-6j)=2+4j equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3-5j)(2-6j)=2+4j equation:



(3-5j)(2-6j)=2+4j
We move all terms to the left:
(3-5j)(2-6j)-(2+4j)=0
We add all the numbers together, and all the variables
(-5j+3)(-6j+2)-(4j+2)=0
We get rid of parentheses
(-5j+3)(-6j+2)-4j-2=0
We multiply parentheses ..
(+30j^2-10j-18j+6)-4j-2=0
We get rid of parentheses
30j^2-10j-18j-4j+6-2=0
We add all the numbers together, and all the variables
30j^2-32j+4=0
a = 30; b = -32; c = +4;
Δ = b2-4ac
Δ = -322-4·30·4
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{34}}{2*30}=\frac{32-4\sqrt{34}}{60} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{34}}{2*30}=\frac{32+4\sqrt{34}}{60} $

See similar equations:

| 30=3/4p | | X+y+142=360 | | x/17=51* | | 3|x|=21 | | 114+2y+30=180 | | -16=8(y-6) | | 114+(3x-24)=180 | | 7y+8=78 | | x(20x3+40)=120 | | –18+13h=h+18 | | 4x-3=2x-9x+8 | | (5x+4)°=(3x-24)° | | 15-4x=-5x | | 3y=-4+5 | | X-20=18+6x+17 | | 2x+3(-3+x=-15-7x | | -6x+4.22=-3.02-6.4x | | 9-20x+14=-9-18x | | -1(7-4x)-2x-1(3x-9)=-8 | | 19x-9=18x+6 | | -5x=-3x-14 | | (3x)°+18°=180° | | -0.5x-7=-7 | | -10+6x=4x+2 | | s.P=4s | | 8-2x=-10-5x | | 1/4x+2=-1/3-6 | | -10x+3-9=-5-9x | | 9x=-7+8x | | -3x-10=8-x | | 6x+14+2x=35+x | | 6w-12=-6 |

Equations solver categories