(3-2x)(2x+9)-3(5x-1)(4-x)=0

Simple and best practice solution for (3-2x)(2x+9)-3(5x-1)(4-x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3-2x)(2x+9)-3(5x-1)(4-x)=0 equation:



(3-2x)(2x+9)-3(5x-1)(4-x)=0
We add all the numbers together, and all the variables
(-2x+3)(2x+9)-3(5x-1)(-1x+4)=0
We multiply parentheses ..
(-4x^2-18x+6x+27)-3(5x-1)(-1x+4)=0
We get rid of parentheses
-4x^2-18x+6x-3(5x-1)(-1x+4)+27=0
We multiply parentheses ..
-4x^2-3(-5x^2+20x+x-4)-18x+6x+27=0
We add all the numbers together, and all the variables
-4x^2-3(-5x^2+20x+x-4)-12x+27=0
We multiply parentheses
-4x^2+15x^2-60x-3x-12x+12+27=0
We add all the numbers together, and all the variables
11x^2-75x+39=0
a = 11; b = -75; c = +39;
Δ = b2-4ac
Δ = -752-4·11·39
Δ = 3909
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-\sqrt{3909}}{2*11}=\frac{75-\sqrt{3909}}{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+\sqrt{3909}}{2*11}=\frac{75+\sqrt{3909}}{22} $

See similar equations:

| 6/x-6=-5/2x-12+2 | | 4x-3(2x-1)=5x-3 | | 5x+10=x-17 | | -3/2r=-3/5 | | 8x+4=12x-14 | | x/2+45=3x | | 10=h | | -8(x-1)=2(1-4x)-9 | | 9(4x-8)=3(12+4) | | 16p-12=292 | | 9x-2(x-3)=7x+3 | | 31/4x=26 | | 44m-2=86 | | 7r-4r+3=6r+3-r | | 8+3d=23 | | (-0.0049=1)(0.052500=x) | | x-2.97=4.52 | | -0.0049=1(0.052500=x) | | 400-3p=-100+2p | | -0.0049=10.052500=x | | 2k+8=196 | | 2t+4t=24 | | (4x+7)(4x-7)(1-x)=0 | | x+21=156 | | 3*x-5=2*x+7 | | -4/(2-5z)=3 | | 18a=648 | | y+110=200 | | -5(3x-2)+2x=4x-3 | | 28(2x-1)=7(x+3)=2x | | 10-y=0 | | 45-y=9 |

Equations solver categories