(3+2i)+(2+bi)=5-4i

Simple and best practice solution for (3+2i)+(2+bi)=5-4i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3+2i)+(2+bi)=5-4i equation:


Simplifying
(3 + 2i) + (2 + bi) = 5 + -4i

Remove parenthesis around (3 + 2i)
3 + 2i + (2 + bi) = 5 + -4i

Remove parenthesis around (2 + bi)
3 + 2i + 2 + bi = 5 + -4i

Reorder the terms:
3 + 2 + bi + 2i = 5 + -4i

Combine like terms: 3 + 2 = 5
5 + bi + 2i = 5 + -4i

Add '-5' to each side of the equation.
5 + bi + -5 + 2i = 5 + -5 + -4i

Reorder the terms:
5 + -5 + bi + 2i = 5 + -5 + -4i

Combine like terms: 5 + -5 = 0
0 + bi + 2i = 5 + -5 + -4i
bi + 2i = 5 + -5 + -4i

Combine like terms: 5 + -5 = 0
bi + 2i = 0 + -4i
bi + 2i = -4i

Solving
bi + 2i = -4i

Solving for variable 'b'.

Move all terms containing b to the left, all other terms to the right.

Add '-2i' to each side of the equation.
bi + 2i + -2i = -4i + -2i

Combine like terms: 2i + -2i = 0
bi + 0 = -4i + -2i
bi = -4i + -2i

Combine like terms: -4i + -2i = -6i
bi = -6i

Divide each side by 'i'.
b = -6

Simplifying
b = -6

See similar equations:

| 2/3q-5/12=13/20 | | 28=t^2/2-t/2 | | 28=(t^2-t/2) | | 56=4x^2-32x+84 | | 56=4x^2+32x+84 | | .8(15y-20)=2(2y+8) | | 7/2=11/x | | 28=ft | | -17=-5r-2r | | z^4+(5*z^2)+9=0 | | -7(4-5n)=-33 | | 4^5-^9x=1/8^x-2 | | c+2z-11c-z= | | 12x+(13x-19)-(11x-5)=25-(17-13x) | | 16-4(x-3)=3(x+4)-12 | | 2x+40+x-10=180 | | 2x+6=147 | | k^2-4k+20=0 | | 1/3x101/2 | | -3y+18= | | 6x+23=8x+5 | | 2=0.2y | | 13x^2-14xy+13y^2-9=0 | | 0.7x+2=0 | | 3x+[-5x(x+3)]=8x+(-5x-9) | | V^2=4v+8 | | 3*(1-x)=3.32 | | x^3-10x^2+5x+7=0 | | 3(0.5)-4+1=2(0.5)-5+5(0.5) | | 4In(5x)=-4 | | Y+4=-2.3(x-3) | | u-b=cforb |

Equations solver categories