(3)/(4)x=(1)/(12)x+2

Simple and best practice solution for (3)/(4)x=(1)/(12)x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3)/(4)x=(1)/(12)x+2 equation:



(3)/(4)x=(1)/(12)x+2
We move all terms to the left:
(3)/(4)x-((1)/(12)x+2)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 12x+2)!=0
x∈R
We get rid of parentheses
3/4x-1/12x-2=0
We calculate fractions
36x/48x^2+(-4x)/48x^2-2=0
We multiply all the terms by the denominator
36x+(-4x)-2*48x^2=0
Wy multiply elements
-96x^2+36x+(-4x)=0
We get rid of parentheses
-96x^2+36x-4x=0
We add all the numbers together, and all the variables
-96x^2+32x=0
a = -96; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·(-96)·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*-96}=\frac{-64}{-192} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*-96}=\frac{0}{-192} =0 $

See similar equations:

|  7x-3=-3+7x  | | -8/5+1/2v=-1/3 | | 10.5+8.18=18.9p+4.6p+0.38 | | 1200(2)^x/2=60000 | | -6.6g+3.75=13.85-5.6g | | 20x^2-4x+8=0 | | 11+16t=17t | | 12-18j=-4j-17j-15 | | 13.03+12.3b=-2-17.77+7.3b | | -18+18u=20u+18 | | -20d=-19d+18 | | -2v-5=1+7v-10v | | 10-n=7n-10-4n | | -19b+6=4-20b | | 4x=9x+18 | | 2x+x+63=90 | | 4.7d-15.2=5.7d | | 9r+3=65 | | 9+10z+19=-20+13z | | 18q-15=19q+1 | | -x-8=-19 | | 9+2f=3f | | 8x²+34x+21=0 | | 3-6v=10-5v | | 7x+8-3x=2(x-15) | | 32=4L+w | | m+8+7m=7m-2 | | 105=x(x+2)(x+4) | | -9x+3(-6+24)=-12 | | 10+2g=-8g-10 | | 55+65=2x | | 3x+2=9+x |

Equations solver categories