If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3)/(4)m-2(m-1)=(1)/(4)m+5
We move all terms to the left:
(3)/(4)m-2(m-1)-((1)/(4)m+5)=0
Domain of the equation: 4m!=0
m!=0/4
m!=0
m∈R
Domain of the equation: 4m+5)!=0We multiply parentheses
m∈R
3/4m-2m-(1/4m+5)+2=0
We get rid of parentheses
3/4m-2m-1/4m-5+2=0
We multiply all the terms by the denominator
-2m*4m-5*4m+2*4m+3-1=0
We add all the numbers together, and all the variables
-2m*4m-5*4m+2*4m+2=0
Wy multiply elements
-8m^2-20m+8m+2=0
We add all the numbers together, and all the variables
-8m^2-12m+2=0
a = -8; b = -12; c = +2;
Δ = b2-4ac
Δ = -122-4·(-8)·2
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{13}}{2*-8}=\frac{12-4\sqrt{13}}{-16} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{13}}{2*-8}=\frac{12+4\sqrt{13}}{-16} $
| 3b=639 | | 20n=1,000 | | 6-2h=24 | | 7x=6x=5x | | -8+7y=3y+4+2y | | 195=5d | | 2(8,5-1,5b)+3b=17 | | 40=w/4 | | -6x-4x=4x-4x+50 | | 39+4=n | | -1.3x-1=-0.8+7 | | 17-3b+3b=17 | | 8x=8x-48 | | −1+n/2=−10 | | 3x16x=6 | | 8y=–10+9y | | 8x=8x-49 | | 4+9=n | | (x-2)(5x^2-6x-13)=0 | | 2.5n=45;n=15 | | 45-z=2 | | 3/2(2x−4)=3/1(4x+6) | | 23b=828 | | 3x+9=36x*x+144x+108 | | 42=p/6 | | 1/3(x+6)=5/6 | | 6+M=n | | 127+2h=951 | | 25b=250 | | 7^2x+2=7^-3x | | -7r+8=6+4-8r | | f(2)=3×2+5 |