(3)/(2)b+6+(1)/(2)b=15+2b

Simple and best practice solution for (3)/(2)b+6+(1)/(2)b=15+2b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3)/(2)b+6+(1)/(2)b=15+2b equation:



(3)/(2)b+6+(1)/(2)b=15+2b
We move all terms to the left:
(3)/(2)b+6+(1)/(2)b-(15+2b)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
3/2b+1/2b-(2b+15)+6=0
We get rid of parentheses
3/2b+1/2b-2b-15+6=0
We multiply all the terms by the denominator
-2b*2b-15*2b+6*2b+3+1=0
We add all the numbers together, and all the variables
-2b*2b-15*2b+6*2b+4=0
Wy multiply elements
-4b^2-30b+12b+4=0
We add all the numbers together, and all the variables
-4b^2-18b+4=0
a = -4; b = -18; c = +4;
Δ = b2-4ac
Δ = -182-4·(-4)·4
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{97}}{2*-4}=\frac{18-2\sqrt{97}}{-8} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{97}}{2*-4}=\frac{18+2\sqrt{97}}{-8} $

See similar equations:

| 0=4x^2+24x-76 | | 3x-5(x-2)=-8+3x-12 | | m=8/2,7/2 | | 3(2-x)=-(4+3x3) | | 8+0.143x=9 | | 1/2(8x-10)=-3/4(8x+20) | | Q-6p=11 | | -2(5/2x-3/2)=12 | | x0,5=1 | | 43=x+39 | | x–4.7=6.9 | | 8(h+3)=4h | | 2x+3=-12+15x | | -6=0.2k | | 7(x+1)-2x=x2-2x-3 | | 7(p+3)+9=10(p-2)-3p | | 4(w-2)=13-w | | -4K+17=-5(6k+7) | | 3(-4x+2)-9=7(x+1) | | p/4-5=-2 | | 70=2(7)+2n | | (9x+7)+(2x+98)=360 | | 4-4x+3x=-2(x+1 | | x6+4=20 | | 2n=4n-6 | | 6^2+6b+9=0 | | 2=m+6 | | 2(4x-3)-2x+12=42 | | 4=y•5 | | 11/4y-12=-1 | | 14x+8+18x+4=28 | | 6=d/2+3 |

Equations solver categories