(2x/5x)+x=58578

Simple and best practice solution for (2x/5x)+x=58578 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x/5x)+x=58578 equation:



(2x/5x)+x=58578
We move all terms to the left:
(2x/5x)+x-(58578)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2x/5x)+x-58578=0
We add all the numbers together, and all the variables
x+(+2x/5x)-58578=0
We get rid of parentheses
x+2x/5x-58578=0
We multiply all the terms by the denominator
x*5x+2x-58578*5x=0
We add all the numbers together, and all the variables
2x+x*5x-58578*5x=0
Wy multiply elements
5x^2+2x-292890x=0
We add all the numbers together, and all the variables
5x^2-292888x=0
a = 5; b = -292888; c = 0;
Δ = b2-4ac
Δ = -2928882-4·5·0
Δ = 85783380544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{85783380544}=292888$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-292888)-292888}{2*5}=\frac{0}{10} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-292888)+292888}{2*5}=\frac{585776}{10} =58577+3/5 $

See similar equations:

| F(x)=5-5|2x-2| | | t=3t/5+108 | | 16x9=8 | | -(9x+3)=2x-48+3x | | t=3/5t+108 | | 20x^2-40x-11x+5=0 | | 10=28.7t-4.9t^2 | | -9|9+2x|=-45 | | 2x(x)=80 | | (x+3)^3/2=64 | | .3a+0.7=0.5a-0.1 | | -⅝+x=5 | | 4=7y+2/3+3y+4/7 | | 1.5x-0.67x=2 | | 7x-x1=4-7x+21 | | 13=|–5n|+7 | | 2k*2k-37=61 | | 2x+7=7x-1 | | (3x/4)-(2/3)=(5/6) | | 1y+8=17= | | 256=n*n | | 2a^2+5a-30=0 | | 65/x=30 | | (6x+3)(3x–5)=(9x–4)(2x–7)+7 | | p+4p=-5 | | 6y(3-4y)(8y+9)^2=0 | | -32=10x+8 | | 5k+2=-3 | | 8f-9=21+2f | | 3n+2=104 | | BC=6x+13 | | 5(3+2x)=10-4 |

Equations solver categories