(2x-8)=(2x+7)(x-6)

Simple and best practice solution for (2x-8)=(2x+7)(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-8)=(2x+7)(x-6) equation:



(2x-8)=(2x+7)(x-6)
We move all terms to the left:
(2x-8)-((2x+7)(x-6))=0
We get rid of parentheses
2x-((2x+7)(x-6))-8=0
We multiply parentheses ..
-((+2x^2-12x+7x-42))+2x-8=0
We calculate terms in parentheses: -((+2x^2-12x+7x-42)), so:
(+2x^2-12x+7x-42)
We get rid of parentheses
2x^2-12x+7x-42
We add all the numbers together, and all the variables
2x^2-5x-42
Back to the equation:
-(2x^2-5x-42)
We add all the numbers together, and all the variables
2x-(2x^2-5x-42)-8=0
We get rid of parentheses
-2x^2+2x+5x+42-8=0
We add all the numbers together, and all the variables
-2x^2+7x+34=0
a = -2; b = 7; c = +34;
Δ = b2-4ac
Δ = 72-4·(-2)·34
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{321}}{2*-2}=\frac{-7-\sqrt{321}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{321}}{2*-2}=\frac{-7+\sqrt{321}}{-4} $

See similar equations:

| 2(22x+4)=96 | | 5x/3-9=21 | | 5y=17. | | -3x-9=81 | | 2-324/x²=0 | | 7x2+11=0 | | 3x+4=3x-4x | | -7u/9=-35 | | 7-+9x2=5x-6 | | -9=3/7w | | (p+4)(7p+5)=0 | | 7k+36=6(-5+3k) | | -5y=10/7 | | 2x-2+5=4x-7+3x | | 5.5(x+3)=7x | | 12+(9+8=12+x)+9 | | 3u^2+7u-20=0 | | 38=-10+7a | | 90+11x-2+6x+7=180 | | 1.1=2y+10.5 | | 30x+15=105 | | 4y-2=3-y | | -1(2/3)=5k | | 11y-1=49 | | -12/3=5k | | (4)/(10)x-3x+(6)/(5)=(4)/(5) | | −1/3z=8/3 | | 1.9=4y+14.7 | | 25x-11=15x+19 | | 6.4=u | | 2n/5=-7/9 | | 16x-20=100 |

Equations solver categories