(2x-6)(x-2)=756

Simple and best practice solution for (2x-6)(x-2)=756 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-6)(x-2)=756 equation:



(2x-6)(x-2)=756
We move all terms to the left:
(2x-6)(x-2)-(756)=0
We multiply parentheses ..
(+2x^2-4x-6x+12)-756=0
We get rid of parentheses
2x^2-4x-6x+12-756=0
We add all the numbers together, and all the variables
2x^2-10x-744=0
a = 2; b = -10; c = -744;
Δ = b2-4ac
Δ = -102-4·2·(-744)
Δ = 6052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6052}=\sqrt{4*1513}=\sqrt{4}*\sqrt{1513}=2\sqrt{1513}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1513}}{2*2}=\frac{10-2\sqrt{1513}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1513}}{2*2}=\frac{10+2\sqrt{1513}}{4} $

See similar equations:

| x+45+78=180 | | 8x-18+110+40=180 | | x+107+44=180 | | x+48+77=180 | | 3x+9+33+90=180 | | x+58+41=180 | | x+71+64=180 | | x2-10+x+58=180 | | 5x-8+36+62=180 | | W^2+7w-58=0 | | y-18y=17 | | 21=5w-9 | | x+58+45=180 | | 9x+6-3x=-6x-17+x | | x+103+47=180 | | x/16=136 | | 21.1/5=x | | x+32+43=180 | | 3x-5.9=9.1 | | (-1/14)x^2+4x+5=0 | | 9x+24=75 | | 6.5g+4=4.5g+16 | | x^2-7x-2=-7x+23 | | 4+x/2.56=6 | | 31+x=33 | | 2x^2-7x=9-7x+x^2 | | 2x^2-7x=9-7x+x62 | | 3(x-16)=5(x+4) | | 3(x=16)=5(x+4) | | 0.4(x-2)=-14 | | 5x-2(2x-10)=3(x+8) | | 4^9x-5=16 |

Equations solver categories