(2x-50)+(1/2x+15)=180

Simple and best practice solution for (2x-50)+(1/2x+15)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-50)+(1/2x+15)=180 equation:



(2x-50)+(1/2x+15)=180
We move all terms to the left:
(2x-50)+(1/2x+15)-(180)=0
Domain of the equation: 2x+15)!=0
x∈R
We get rid of parentheses
2x+1/2x-50+15-180=0
We multiply all the terms by the denominator
2x*2x-50*2x+15*2x-180*2x+1=0
Wy multiply elements
4x^2-100x+30x-360x+1=0
We add all the numbers together, and all the variables
4x^2-430x+1=0
a = 4; b = -430; c = +1;
Δ = b2-4ac
Δ = -4302-4·4·1
Δ = 184884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184884}=\sqrt{4*46221}=\sqrt{4}*\sqrt{46221}=2\sqrt{46221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-430)-2\sqrt{46221}}{2*4}=\frac{430-2\sqrt{46221}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-430)+2\sqrt{46221}}{2*4}=\frac{430+2\sqrt{46221}}{8} $

See similar equations:

| 16=1+7y | | 1x-24=-5 | | -8(x+2)=-52 | | u+34=45 | | 9/x=45/27 | | 4t-7=6 | | x-25+65=180 | | 60x+15=15 | | p+20=12 | | q/2.5-8=-4 | | p20=12 | | G(t)=6.72(2)^t | | 3z-5+9z+41=180 | | 900=b4+b | | 4x-2(3x-9)=5(2x-8)+9× | | p-2/5=7 | | 4x-2(3x-9)=5(2x-8)+9 | | 88+x=12 | | 30=4(v+6)-6v | | 28=4+3r | | 4x+11=7x-25 | | 6p+10=44 | | 8=1y=15 | | 2=41/r | | -25=5(y-8)-8y | | 3f-9f^2=6 | | 3(5c-4)-1=7c+3 | | 0.01t^2+4.2=0 | | 9y+25=5(y+1) | | 122-v=230 | | 3y2+4y=4 | | 17-x÷3=4.5 |

Equations solver categories