(2x-5)=(6x2-6x-11)

Simple and best practice solution for (2x-5)=(6x2-6x-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)=(6x2-6x-11) equation:



(2x-5)=(6x^2-6x-11)
We move all terms to the left:
(2x-5)-((6x^2-6x-11))=0
We get rid of parentheses
2x-((6x^2-6x-11))-5=0
We calculate terms in parentheses: -((6x^2-6x-11)), so:
(6x^2-6x-11)
We get rid of parentheses
6x^2-6x-11
Back to the equation:
-(6x^2-6x-11)
We get rid of parentheses
-6x^2+2x+6x+11-5=0
We add all the numbers together, and all the variables
-6x^2+8x+6=0
a = -6; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·(-6)·6
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{13}}{2*-6}=\frac{-8-4\sqrt{13}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{13}}{2*-6}=\frac{-8+4\sqrt{13}}{-12} $

See similar equations:

| 2x+44=108 | | 3v+7=-5 | | x+{-3}=-93 | | 2x+5=2-(x+5) | | 4x-8=-3x=13 | | 0.27x=27 | | 0.4x-2.9=0.7 | | -5a+12+7a=2a-6a | | -57=39(y-7) | | -20+5x=90 | | 202=101-w | | 52-x=195 | | (2x+2)=76 | | 167=112-x | | 3x-88x=42 | | 7i+7=14 | | 1/4x+7/2x=15 | | -7+p=3p-47 | | 1/2a+8=16 | | -2x+3-4=5x-7-x | | -2x+3-4=5x-7 | | 5a+10=110 | | 0.16x+0.5(x-5)=0.01(4x-5) | | 39-2x=33 | | 2x-3/6=3 | | (4-m)/3-(3m-1)/5=1 | | 7a+4/9+4=13a+23/18 | | (x-24)/8=x/6 | | -1.46b+10=-18 | | Y^2-2.5y+1.5=0 | | (M-4)/3-(3m-1)/5=1 | | 8d+4=4d+8 |

Equations solver categories