(2x-5)*2=(2x-1)(2x+1)-10(2x-1)

Simple and best practice solution for (2x-5)*2=(2x-1)(2x+1)-10(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)*2=(2x-1)(2x+1)-10(2x-1) equation:



(2x-5)*2=(2x-1)(2x+1)-10(2x-1)
We move all terms to the left:
(2x-5)*2-((2x-1)(2x+1)-10(2x-1))=0
We use the square of the difference formula
4x^2+(2x-5)*2+1=0
We multiply parentheses
4x^2+4x-10+1=0
We add all the numbers together, and all the variables
4x^2+4x-9=0
a = 4; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·4·(-9)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*4}=\frac{-4-4\sqrt{10}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*4}=\frac{-4+4\sqrt{10}}{8} $

See similar equations:

| x2−14x=30 | | 2k^2=30-4k | | -s–8s=-18 | | s–8s=-18 | | (3q^-5)^2=1 | | 80=5x-7(2x+4) | | x-(x-4)=45 | | 3x-51=-9 | | -5x+5(-3x+9)=-175 | | 15h+4(5-2h=) | | 4x-6(x+2)=-2 | | x=5-3(23x5) | | .2(2x+8)=−16 | | 2(8x-6)=(25x-13) | | 2x+8+14x+2=90 | | -271=-11x+147 | | 42x4=64 | | 27x+3=2(9x-5) | | 3/4=x/3.8 | | 2(9x-5)=27x+3 | | 0.3t=t-154 | | 2(5x+36)=13x+9 | | -11/6+m=-2.9 | | 3x+31=6x+10 | | w/2=3.2 | | 4z-2=18-4z | | 15x-39=9x-3 | | 49.10=2.10x=5 | | 5x-7=59.5 | | 5r+9r=-35 | | 6x-6=7-5x | | 2(5x-7)=119 |

Equations solver categories