(2x-5)(2x-5)-(x-6)(x-6)-80=0

Simple and best practice solution for (2x-5)(2x-5)-(x-6)(x-6)-80=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)(2x-5)-(x-6)(x-6)-80=0 equation:



(2x-5)(2x-5)-(x-6)(x-6)-80=0
We multiply parentheses ..
(+4x^2-10x-10x+25)-(x-6)(x-6)-80=0
We get rid of parentheses
4x^2-10x-10x-(x-6)(x-6)+25-80=0
We multiply parentheses ..
4x^2-(+x^2-6x-6x+36)-10x-10x+25-80=0
We add all the numbers together, and all the variables
4x^2-(+x^2-6x-6x+36)-20x-55=0
We get rid of parentheses
4x^2-x^2+6x+6x-20x-36-55=0
We add all the numbers together, and all the variables
3x^2-8x-91=0
a = 3; b = -8; c = -91;
Δ = b2-4ac
Δ = -82-4·3·(-91)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1156}=34$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-34}{2*3}=\frac{-26}{6} =-4+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+34}{2*3}=\frac{42}{6} =7 $

See similar equations:

| -9a+19a=-20 | | (2x+5)^1/3-(6x-1)^1/3=0 | | 63(4x-3)=x | | 12a+6a+8+10a-4+6a+8=250 | | 2k/27=2/3 | | f/3+-6=2 | | 420/d=30;d=15 | | 17m+-12m=15 | | 3z+-4z+-13=-5 | | 2008.58*x=1.25 | | x5=-5 | | c/3-12=32 | | 19=c+(+12) | | 8m-7m=18 | | -4(1)+2x=6 | | 3(2x-5)=2(3x | | 2a-3+2a+3a+1=47 | | 17x=9(x+4)=3-26 | | 1-q=-4 | | c/3-20=18 | | 17=x-3(x+11) | | 3/4c-1=8 | | 15-(x-2+3x-15)=30 | | 4=39-5x | | 2x+8/2-2(3x-5)+2x=4x+2/3 | | 8h+7=6h-8 | | d/4 – 1 = 2 | | 6m-5m-1=7 | | y+13=72 | | -4(0)+2x=6 | | d/4 – 1 = 2 | | -2x-7−2x−7=x-37 |

Equations solver categories