(2x-3)3=(2x-3)(2x-3)2

Simple and best practice solution for (2x-3)3=(2x-3)(2x-3)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)3=(2x-3)(2x-3)2 equation:



(2x-3)3=(2x-3)(2x-3)2
We move all terms to the left:
(2x-3)3-((2x-3)(2x-3)2)=0
We multiply parentheses
6x-((2x-3)(2x-3)2)-9=0
We multiply parentheses ..
-((+4x^2-6x-6x+9)2)+6x-9=0
We calculate terms in parentheses: -((+4x^2-6x-6x+9)2), so:
(+4x^2-6x-6x+9)2
We multiply parentheses
8x^2-12x-12x+18
We add all the numbers together, and all the variables
8x^2-24x+18
Back to the equation:
-(8x^2-24x+18)
We add all the numbers together, and all the variables
6x-(8x^2-24x+18)-9=0
We get rid of parentheses
-8x^2+6x+24x-18-9=0
We add all the numbers together, and all the variables
-8x^2+30x-27=0
a = -8; b = 30; c = -27;
Δ = b2-4ac
Δ = 302-4·(-8)·(-27)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6}{2*-8}=\frac{-36}{-16} =2+1/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6}{2*-8}=\frac{-24}{-16} =1+1/2 $

See similar equations:

| 2k(k+3)=6k+18 | | 9t-8t=18 | | -15+4+n=73-93 | | 14(x+1)=12x | | 4/5=7/w+5 | | 14d+d-13d+d=3 | | 64=2(l+9) | | 72+10x=362 | | 4r+3r=7 | | 19p-16p=6 | | w-2/6=3/8 | | 17x+157=180 | | 8r+2=2(3r+5) | | -3/10x=12 | | 5(x+2)=x÷2 | | 7x-19=-61 | | -10=-4x—10 | | 5(x+2)=x/2 | | 3*(x+5)+2×=40 | | 4(6x-1)=20x | | 8x+4=3x-15 | | 35/10=14/u | | 17x^2+18x-8=0 | | 35/10=15/u | | -20y+15=2-16y+11−20y+15=2−16y+11 | | -13y+5(-2y+7)=403 | | 5x^+7x+1=3x^+2x+1 | | 8/4=2/k | | 3y-14(-2y+7)=584 | | 6x=255 | | 17y+6(-8y+3)=514 | | 6−8n=3n+6 |

Equations solver categories