(2x-3)(3x-1)=(x+1)(2x+6)

Simple and best practice solution for (2x-3)(3x-1)=(x+1)(2x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(3x-1)=(x+1)(2x+6) equation:



(2x-3)(3x-1)=(x+1)(2x+6)
We move all terms to the left:
(2x-3)(3x-1)-((x+1)(2x+6))=0
We multiply parentheses ..
(+6x^2-2x-9x+3)-((x+1)(2x+6))=0
We calculate terms in parentheses: -((x+1)(2x+6)), so:
(x+1)(2x+6)
We multiply parentheses ..
(+2x^2+6x+2x+6)
We get rid of parentheses
2x^2+6x+2x+6
We add all the numbers together, and all the variables
2x^2+8x+6
Back to the equation:
-(2x^2+8x+6)
We get rid of parentheses
6x^2-2x^2-2x-9x-8x+3-6=0
We add all the numbers together, and all the variables
4x^2-19x-3=0
a = 4; b = -19; c = -3;
Δ = b2-4ac
Δ = -192-4·4·(-3)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{409}}{2*4}=\frac{19-\sqrt{409}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{409}}{2*4}=\frac{19+\sqrt{409}}{8} $

See similar equations:

| 10(n+4)=62 | | 1/2x-3=(-3/2)x+5 | | 100x=122x-66 | | –6m=–4m+8 | | 6.68=2.3c+0.7 | | 11y-21=3y=19 | | 6+5x=3x+32 | | (3x)(7+x)=0 | | 2x-3-3x=12 | | 3(7x)–2(4–x)=x | | 14n=35. | | -5(-2x+5)=25 | | 3x-8=-9-2x | | 3•s=18 | | 1.34=-1.6b+1.5 | | 3(7x=)–2(4–x=) | | 2•s=18 | | 10-5y=1 | | 7x+3+2x-6=90 | | 63-5x=7x+48 | | 7x-4=5x+16-2x | | (s/2)-(-1)=4 | | 52x-5x-600=0 | | 2(2x+4)=-(4x-16) | | -4x-134=154-13x | | 0.5(2x+6)=x-4 | | -5r-7=-17 | | 2x^2-12x=-26 | | -6.74=-1.8y+0.1 | | 9c-16.8c=12.4 | | 3(x+5)=2(3x+14)-4 | | -2=m÷16 |

Equations solver categories