If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-3)(2x+3)=81
We move all terms to the left:
(2x-3)(2x+3)-(81)=0
We use the square of the difference formula
4x^2-9-81=0
We add all the numbers together, and all the variables
4x^2-90=0
a = 4; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·4·(-90)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*4}=\frac{0-12\sqrt{10}}{8} =-\frac{12\sqrt{10}}{8} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*4}=\frac{0+12\sqrt{10}}{8} =\frac{12\sqrt{10}}{8} =\frac{3\sqrt{10}}{2} $
| x=12=2x+7 | | 2x+16+8x-4=72 | | 5-3(x-2)=14 | | -6x+2-5x=-119 | | 284=4(8-8b)-4 | | 8=2(q+2) | | 9x+3=-1x+5 | | -4+(x/14)=15 | | 9y+3=24 | | 11+x+13=x+3+34 | | X-3=4a | | -16=6+x/7 | | 232=8(1+4b) | | 2(f-3)-4=2 | | 3=m-(-2) | | 82=6x+6x-2 | | 34+15(x+3)^2=(-13)^2 | | 2+1/5x=3/10x | | -1-7x=-42-6x+36 | | 7x+9-5=-7 | | 5x-13+6x+28=2x-21 | | x-+7-4(x+1)=-10 | | (2-6y)/3=(2-y-24)/2 | | 4x-9-x=-36 | | 8n-5=n | | -147=-7(1-3m)+7 | | 312=-5(-8r-5)+7 | | 2/3-c/4=5/6 | | 2x+8=12+16 | | 312=-5(-8r-)+7 | | -2+6x-4x=-26 | | 170=-3n-7(5n-8) |