(2x-2)+(x+1)+x(x+1)=55

Simple and best practice solution for (2x-2)+(x+1)+x(x+1)=55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-2)+(x+1)+x(x+1)=55 equation:



(2x-2)+(x+1)+x(x+1)=55
We move all terms to the left:
(2x-2)+(x+1)+x(x+1)-(55)=0
We multiply parentheses
x^2+(2x-2)+(x+1)+x-55=0
We get rid of parentheses
x^2+2x+x+x-2+1-55=0
We add all the numbers together, and all the variables
x^2+4x-56=0
a = 1; b = 4; c = -56;
Δ = b2-4ac
Δ = 42-4·1·(-56)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{15}}{2*1}=\frac{-4-4\sqrt{15}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{15}}{2*1}=\frac{-4+4\sqrt{15}}{2} $

See similar equations:

| 3p+24=78 | | 135+650=x | | 8y-12y+5=21 | | -4t-4=-49 | | 89x+50+50=180 | | 3(5x+2)=5x+18 | | n=-7+2n | | 4(v-6)-7v=-33 | | a-10/3-9=-8 | | 15=4(x+3)-7x | | 6-8w=-6-2w | | 23=3w-10 | | n+7+3n=-3+6n | | 17=3x+5x-23 | | -18x-7=24-7(6x-7) | | 7z-9.4=27 | | -10n+7=9-9n-10 | | 3x÷4+16=22 | | 80+x+13=10 | | 11x—=1111 | | 55-x-25=25 | | -18=-8+5x | | 4x+100=3x+65 | | 1.21x=3.63 | | 4x-x+6=2x+2+x | | 3x^-12x+10=0 | | -3(t=5)=(4t=2)=8 | | c/9+8=13 | | -6y+24y+7=-4y-2y+9+19y | | 12x-11-3x=x+9 | | -7x=-7x+1 | | Y=0.54x-3.2 |

Equations solver categories