(2x-2)(x-6)=(x+3)(x-2)

Simple and best practice solution for (2x-2)(x-6)=(x+3)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-2)(x-6)=(x+3)(x-2) equation:



(2x-2)(x-6)=(x+3)(x-2)
We move all terms to the left:
(2x-2)(x-6)-((x+3)(x-2))=0
We multiply parentheses ..
(+2x^2-12x-2x+12)-((x+3)(x-2))=0
We calculate terms in parentheses: -((x+3)(x-2)), so:
(x+3)(x-2)
We multiply parentheses ..
(+x^2-2x+3x-6)
We get rid of parentheses
x^2-2x+3x-6
We add all the numbers together, and all the variables
x^2+x-6
Back to the equation:
-(x^2+x-6)
We get rid of parentheses
2x^2-x^2-12x-2x-x+12+6=0
We add all the numbers together, and all the variables
x^2-15x+18=0
a = 1; b = -15; c = +18;
Δ = b2-4ac
Δ = -152-4·1·18
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{17}}{2*1}=\frac{15-3\sqrt{17}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{17}}{2*1}=\frac{15+3\sqrt{17}}{2} $

See similar equations:

| 11x-11=-110 | | 3/51=n/17 | | 9.8y-18.56=0.44+10.8y | | 16.8n=-2.1+16.6n | | 17-x=59 | | 12(p−36)=3888 | | -20+7m=9m+14 | | 9p=15+10p | | -20-4u=-6u+20-10 | | 6z+5+3z+4=180 | | -20−4u=-6u+20−10 | | -9+2g=g | | 5k-3=16-3k | | 19-r=7 | | 2x+3+45=135 | | (5a-2)/3=1 | | 3(-2-3x)=-7x-4-2x | | 4/7=n/64 | | (11)/(18)x+(5)/(9)=(5)/(9)x | | u/2−8=-6 | | -4x+7=97+5x | | 9x−102=−8x | | -1-2x=-3x-7 | | e+55+35=180 | | 4x+25=2x+85 | | 5x-2x=1x+10 | | 8.6x+4.4x+11=54 | | 55x+35=180 | | -1+4x=5x-8 | | 8x-3x+2=2x+20 | | 3=h/3+6 | | 35x+55=180 |

Equations solver categories