(2x-120)+(1/2x+15)+(x-30)=180

Simple and best practice solution for (2x-120)+(1/2x+15)+(x-30)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-120)+(1/2x+15)+(x-30)=180 equation:



(2x-120)+(1/2x+15)+(x-30)=180
We move all terms to the left:
(2x-120)+(1/2x+15)+(x-30)-(180)=0
Domain of the equation: 2x+15)!=0
x∈R
We get rid of parentheses
2x+1/2x+x-120+15-30-180=0
We multiply all the terms by the denominator
2x*2x+x*2x-120*2x+15*2x-30*2x-180*2x+1=0
Wy multiply elements
4x^2+2x^2-240x+30x-60x-360x+1=0
We add all the numbers together, and all the variables
6x^2-630x+1=0
a = 6; b = -630; c = +1;
Δ = b2-4ac
Δ = -6302-4·6·1
Δ = 396876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396876}=\sqrt{4*99219}=\sqrt{4}*\sqrt{99219}=2\sqrt{99219}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99219}}{2*6}=\frac{630-2\sqrt{99219}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99219}}{2*6}=\frac{630+2\sqrt{99219}}{12} $

See similar equations:

| 4n-1n+1=-8 | | x=9+1/2 | | 2(4x-3)-8=4=2x | | 15-(4w-5)=32 | | Y=2x/4 | | 14=u/7 | | 5y=34=-2(-7y+1) | | x=9-1/2 | | 22=2/5x | | 0.5x-4=-3-1/3 | | Z-4z=5z-4-z | | 0n-2+3n=-8 | | 400=8d | | -3x-2=6 | | 9(x-9)+81=8(x+4)-6(x+2) | | 7(n+6)=2n-60 | | 20+15t=1200 | | 5x+2-5(x+1)=6x+6 | | 6t-8=1/3(24-18t) | | 75z/−6z=3 | | 3(4x-6)-2(x-4)=2(4x-2)-30 | | B-a=43 | | 1/900(290x+1929)=52 | | 1/4+3=9c | | 12(2x-3)=24 | | 0.5x-1=9 | | 3(4x-6)-2(x-4)=2(4x-2)-3” | | 6k^2-21k+18=0 | | 2w^2-18w=75 | | 2+0n+3n=-1 | | 5(y-6)-4y=6 | | –5x+2–x+1=0 |

Equations solver categories