If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-1)(x+4)=(5+x)(2+x)
We move all terms to the left:
(2x-1)(x+4)-((5+x)(2+x))=0
We add all the numbers together, and all the variables
(2x-1)(x+4)-((x+5)(x+2))=0
We multiply parentheses ..
(+2x^2+8x-1x-4)-((x+5)(x+2))=0
We calculate terms in parentheses: -((x+5)(x+2)), so:We get rid of parentheses
(x+5)(x+2)
We multiply parentheses ..
(+x^2+2x+5x+10)
We get rid of parentheses
x^2+2x+5x+10
We add all the numbers together, and all the variables
x^2+7x+10
Back to the equation:
-(x^2+7x+10)
2x^2-x^2+8x-1x-7x-4-10=0
We add all the numbers together, and all the variables
x^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 38x+1+2x+9=90 | | 28(w+23)=42(w+11 | | 6x^2-78x=0 | | y*4=95 | | 56-2x=-24=6-7x | | 2(3x-1)=5(10x-3) | | 15+5=20x | | 15+5=20xx= | | -2x-4=45+5x | | -3x+21x=18 | | 5x²=180 | | -6z-2=-8z-2 | | x3(x−3)=6 | | 38x+1=2x+9 | | 2x+14+5x=7(x+3) | | 5−3z+3(3−5z)=12 | | 5^x+6=3^4x | | 15x-3=6x+33 | | 6x5-(720)=0 | | 9+3x=-7x-31 | | 3x+30=7x+6 | | 6+5x=-6x+x | | 4p/7=80 | | -5x+9=7x-63 | | 6x5=720 | | 2(3x+12)=156 | | X-4=-7x+76 | | N=78x.91 | | 2(v+1)−-3=11 | | -3x+3(7x)=18 | | 8*13-6=z | | 1+2x=5x+16 |